Learn More
replenishment of nutrients by fertiliser and oversowing, is topsoil nutrient decline over time accompanied by a decline in vegetation cover, and displacement of native by exotic species (Treskonova 1991), as has been demonstrated in other grasslands exposed to novel grazing by large herbivores (Milchunas and Lauenroth 1993). Although some researchers have(More)
Recent studies suggest that DNA polymerase eta (poleta) and DNA polymerase iota (poliota) are involved in somatic hypermutation of immunoglobulin variable genes. To test the role of poliota in generating mutations in an animal model, we first characterized the biochemical properties of murine poliota. Like its human counterpart, murine poliota is extremely(More)
The Saccharomyces cerevisiae RAD30 gene encodes DNA polymerase ␩. Humans possess two Rad30 homologs. One (RAD30A/POLH) has previously been characterized and shown to be defective in humans with the Xeroderma pigmentosum variant phenotype. Here, we report experiments demonstrating that the second human homolog (RAD30B), also encodes a novel DNA polymerase(More)
DNA damage-inducible mutagenesis in Escherichia coli is largely dependent upon the activity of the UmuD (UmuD') and UmuC proteins. The intracellular level of these proteins is tightly regulated at both the transcriptional and the posttranslational levels. Such regulation presumably allows cells to deal with DNA damage via error-free repair pathways before(More)
For life to be sustained, mistakes in DNA repair must be tolerated when damage obscures the genetic information. In bacteria such as Escherichia coli, DNA damage elicits the well regulated 'SOS response'. For the extreme case of damage that cannot be repaired by conventional enzymes, there are proteins that allow the replication of DNA through such lesions,(More)
Human DNA polymerase iota is a low-fidelity template copier that preferentially catalyzes the incorporation of the wobble base G, rather than the Watson-Crick base A, opposite template T (Tissier, A., McDonald, J. P., Frank, E. G., and Woodgate, R. (2000) Genes Dev. 14, 1642-1650; Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., and Prakash, L.(More)
N3-methyl-adenine (3MeA) is the major cytotoxic lesion formed in DNA by S(N)2 methylating agents. The lesion presumably blocks progression of cellular replicases because the N3-methyl group hinders interactions between the polymerase and the minor groove of DNA. However, this hypothesis has yet to be rigorously proven, as 3MeA is intrinsically unstable and(More)
DNA polymerase iota (pol iota) is one of several recently discovered DNA polymerases in mammalian cells whose function is unknown. We report here that human pol iota has an intrinsic 5'-deoxyribose phosphate (dRP) lyase activity. In reactions reconstituted with uracil-DNA glycosylase (UDG), apurinic/apyrimidinic (AP) endonuclease and DNA ligase I, pol iota(More)
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry(More)
DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically(More)