Ekaterina D. Butova

  • Citations Per Year
Learn More
Consecutive ring-expansion reactions of oxiranes with dimethylsulfxonium methylide were studied experimentally and modeled computationally at the density functional theory (DFT) and second-order Møller-Plesset (MP2) levels of theory utilizing a polarizable continuum model (PCM) to account for solvent effects. While the epoxide to oxetane ring expansion(More)
Bulky methyl ketones show significantly decreased reactivities toward the Corey-Chaykovsky methylenation reagent dimethylsulfoxonium methylide (DMSM). The excess of base and temperature increase opens an alternative reaction channel that instead leads to the corresponding cyclopropyl ketones. Computations suggest that the initial reaction step involves the(More)
The reactivities of the cyclic ketones cycloheptanone, cyclodecanone, and cycloundecanone with dimethylsulfoxonium methylide generated from trimethylsulfoxonium iodide and base (NaH) were studied in diglyme at 130 degrees C. Oxiranes, which primarily form via the Corey reaction, lead to ring expansions to give oxetanes and oxacyclopentanes when an excess of(More)
The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p-n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a(More)
A series of molybdenum(VI) oxide-organic solids were prepared by hydrothermal reactions employing N-donor tectons, which combine two 1,2,4-triazol-4-yl sites separated by representative aliphatic spacers (ethylene, tr(2)eth; 1,3-propylene, tr(2)pr; trans-1,4-cyclohexanediyl, tr(2)cy; diamondoid 1,3-adamantanediyl, tr(2)ad; 1,6- and 4,9-diamantanediyls,(More)
The present paper shows that selective radical reactions can be initiated and carried out in multiphase systems. This concept is applied to the selective functionalization of unactivated aliphatic hydrocarbons, which may be linear, branched, and (poly)cyclic, strained as well as unstrained. The phase-transfer system avoids overfunctionalization of the(More)
Direct unequal C-H bond difunctionalization of phosphorylated diamantane was achieved in high yield from the corresponding phosphonates. Reduction of the functionalized phosphonates provides access to novel primary and secondary alkyl/aryl diamantane phosphines. The prepared primary diamantyl phosphines are quite air stable compared to their adamantyl and(More)
  • 1