Learn More
In this work, a novel waste-to-resource strategy to convert waste bacteria into a useful class of cathode materials, lithium metal phosphate (LiMPO4; M = Fe, Mn), is presented. Escherichia coli (E. coli) bacteria used for removing phosphorus contamination from wastewater are harvested and used as precursors for the synthesis of LiMPO4. After annealing,(More)
Despite the advanced detection and sterilization techniques available today, the sensitive diagnosis and complete elimination of bacterial infections remain a significant challenge. A strategy is reported for efficient bacterial capture (ca. 90%) based on the synergistic effect of the nanotopography and surface chemistry of the substrate on bacterial(More)
Recombinant technology is a versatile platform to create novel artificial proteins with tunable properties. For the last decade, many artificial proteins that have incorporated functional domains derived from nature (or created de novo) have been reported. In particular, artificial extracellular matrix (aECM) proteins have been developed; these aECM(More)
Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic(More)
To improve its phosphate accumulating abilities for phosphate recycling from wastewater, a magnetotactic bacterium, Magnetospirillum gryphiswaldense, was genetically modified to over-express polyphosphate kinase. Polyphosphate kinase was over-expressed in the bacterium. The recombinant strain accumulated ninefold more polyphosphate from synthetic wastewater(More)
Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered(More)
The coupling of proteins with self-assembly properties and proteins that are capable of recognizing and mineralizing specific inorganic species is a promising strategy for the synthesis of nanoscale materials with controllable morphology and functionality. Herein, GPG-AG3 protein fibers with both of these properties were constructed and served as templates(More)
  • 1