Eileen Bridge

Learn More
We have visualized the intranuclear topography of adenovirus replication and transcription in infected HeLa cells. The results show that viral DNA replication occurs in multiple foci that are highly organized in the nucleoplasm. Pulse-chase experiments indicate that newly synthesized viral double-stranded DNA molecules are displaced from the replication(More)
A series of human adenovirus type 5 derivatives carrying deletion mutations in early region 4 (E4) were constructed and characterized with respect to viral late protein synthesis, viral cytoplasmic late message accumulation, viral DNA accumulation, and plaquing ability. Viral late protein synthesis was essentially normal in cells infected by mutants(More)
Posttranscriptional steps in the production of mRNA include well characterized polyadenylation and splicing reactions, but it is also necessary to understand how RNA is transported within the nucleus from the site of its transcription to the nuclear pore, where it is translocated to the cytoplasmic compartment. Determining the localization of RNA within the(More)
Mutants of human adenovirus type 5 (Ad5) lacking early region 4 (E4) display a complex phenotype that includes a delay in the onset of viral DNA replication in low-multiplicity infections. Studies of viral DNA replication in vitro have not revealed a requirement for E4 products in DNA synthesis and, for most E4 mutants, defects in DNA replication are not(More)
The adenovirus 294R protein of E4 ORF 6 forms a physical and functional complex with the 496R protein product of E1b. The E4 294R ORF 6 protein also functions in parallel with the E4 116R ORF 3 protein in viral late protein synthesis. We have examined the roles of these three proteins and the protein complex in viral late protein synthesis and late message(More)
Adenovirus infection affects the nuclear distribution of host splicing factors. Late phase-infected cells contain discrete clusters of small nuclear ribonucleoproteins (snRNPs) that are separate from centers containing the viral 72-kilodalton DNA-binding protein (72K protein). In the present study, we demonstrate that these snRNP clusters also contain(More)
Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11(More)
Adenovirus (Ad) infections stimulate the activation of cellular DNA damage response and repair pathways. Ad early regulatory proteins prevent activation of DNA damage responses by targeting the MRN complex, composed of the Mre11, Rad50 and Nbs1 proteins, for relocalization and degradation. In the absence of these viral proteins, Mre11 colocalizes with viral(More)
The spatial distribution of splicing factors is temporally regulated during adenovirus (ad) infection. Here we focus on two splicing factor distribution patterns characteristic of ad-infected cells. During the intermediate phase splicing factors surround sites of viral DNA accumulation in regions of high transcriptional activity. This distribution appears(More)