Learn More
The relative importance of the liver and kidney for glycine conjugation of ortho-substituted benzoic acids was investigated. Glycine conjugation of ortho-substituted benzoic acids was investigated in mouse liver and kidney mitochondria. The extent of glycine conjugation of benzoic acids with the halogen group decreased in the order F > Cl > Br > I. The(More)
Gene therapy holds great promise for treating diseases ranging from inherited disorders to acquired conditions and cancers. Nonetheless, because a method of gene delivery that is both effective and safe has remained elusive, these successes were limited. Functional nanodiamonds (NDs) are rapidly emerging as promising carriers for next-generation(More)
Nanodiamond materials can serve as highly versatile platforms for the controlled functionalization and delivery of a wide spectrum of therapeutic elements. In this work, doxorubicin hydrochloride (DOX), an apoptosis-inducing drug widely used in chemotherapy, was successfully applied toward the functionalization of nanodiamond materials (NDs, 2-8 nm) and(More)
Enhancing chemotherapeutic efficiency through improved drug delivery would facilitate treatment of chemoresistant cancers, such as recurrent mammary tumors and liver cancer. One way to improve drug delivery is through the use of nanodiamond (ND) therapies, which are both scalable and biocompatible. Here, we examined the efficacy of an ND-conjugated(More)
Enhanced specificity in drug delivery aims to improve upon systemic elution methods by locally concentrating therapeutic agents and reducing negative side effects. Due to their robust physical properties, biocompatibility and drug loading capabilities, nanodiamonds serve as drug delivery platforms that can be applied towards the elution of a broad range of(More)
A broad array of water-insoluble compounds has displayed therapeutically relevant properties toward a spectrum of medical and physiological disorders, including cancer and inflammation. However, the continued search for scalable, facile, and biocompatible routes toward mediating the dispersal of these compounds in water has limited their widespread(More)
Nanodiamonds (NDs) of 2-8 nm diameters physically bound with the chemotherapeutic agent doxorubicin hydrochloride (DOX) were embedded within a parylene C polymer microfilm through a facile and scalable process. The microfilm architecture consists of DOX-ND conjugates sandwiched between a base and thin variable layer of parylene C which allows for modulation(More)
Aqueous dispersible detonation nanodiamonds (NDs) with a diameter of 2-8 nm were assembled into a closely packed ND multilayer nanofilm with positively charged poly-L-lysine via the layer-by-layer deposition technique. The innate biocompatibility of the NDs in both free-floating and thin-film forms was confirmed via cellular gene expression examination by(More)
Because of their unique photoluminescence and magnetic properties, nanodiamonds (NDs) are promising for biomedical imaging and therapeutical applications. However, these biomedical applications will hardly be realized unless the potential hazards of NDs to humans and other biological systems are ascertained. Previous studies performed in our group and(More)
Self-assembled nanodiamond-lipid hybrid particles (NDLPs) harness the potent interaction between the nanodiamond (ND)-surface and small molecules, while providing a mechanism for cell-targeted imaging and therapy of triple negative breast cancers. Epidermal growth factor receptor-targeted NDLPs are highly biocompatible particles that provide cell-specific(More)