Eiji Osawa

Learn More
Gene therapy holds great promise for treating diseases ranging from inherited disorders to acquired conditions and cancers. Nonetheless, because a method of gene delivery that is both effective and safe has remained elusive, these successes were limited. Functional nanodiamonds (NDs) are rapidly emerging as promising carriers for next-generation(More)
Enhanced specificity in drug delivery aims to improve upon systemic elution methods by locally concentrating therapeutic agents and reducing negative side effects. Due to their robust physical properties, biocompatibility and drug loading capabilities, nanodiamonds serve as drug delivery platforms that can be applied towards the elution of a broad range of(More)
We propose a new microscopic mechanism to explain the unusually fast fusion process of carbon nanotubes. We identify the detailed pathway for two adjacent (5,5) nanotubes to gradually merge into a (10,10) tube, and characterize the transition states. The propagation of the fused region is energetically favorable and proceeds in a morphology reminiscent of a(More)
Combining total energy calculations with a search of phase space, we investigate the microscopic fusion mechanism of C 60 fullerenes. We find that the ͑2+2͒ cycloaddition reaction, a necessary precursor for fullerene fusion, may be accelerated inside a nanotube. Fusion occurs along the minimum energy path as a finite sequence of Stone-Wales transformations,(More)
We apply the ab initio spin density functional theory to study magnetism in all-carbon nanostructures. We find that particular systems, which are related to schwarzite and contain no undercoordinated carbon atoms, carry a net magnetic moment in the ground state. We postulate that, in this and other nonalternant aromatic systems with negative Gaussian(More)
The reasons for the formation of the highly symmetric C60 molecule under nonequilibrium conditions are widely discussed as it dominates over numerous similar fullerene structures. In such conditions, evolution of structure rather than energy defines the processes. We have first studied the diversity of fullerenes in terms of information entropy. Sorting(More)
  • 1