Learn More
A new model for vegetation patterns is introduced. The model reproduces a wide range of patterns observed in water-limited regions, including drifting bands, spots, and labyrinths. It predicts transitions from bare soil at low precipitation to homogeneous vegetation at high precipitation, through intermediate states of spot, stripe, and hole patterns. It(More)
Habitat and species richness in drylands are affected by the dynamics of a few key species, termed "ecosystem engineers." These species modulate the landscape and redistribute the water resources so as to allow the introduction of other species. A mathematical model is developed for a pair of ecosystem engineers commonly found in drylands: plants forming(More)
Ecosystem regime shifts are regarded as abrupt global transitions from one stable state to an alternative stable state, induced by slow environmental changes or by global disturbances. Spatially extended ecosystems, however, can also respond to local disturbances by the formation of small domains of the alternative state. Such a response can lead to gradual(More)
A mathematical model for plant communities in water-limited systems is introduced and applied to a mixed woody-herbaceous community. Two feedbacks between biomass and water are found to be of crucial importance for understanding woody-herbaceous interactions: water uptake by plants' roots and increased water infiltration at vegetation patches. The former(More)
In this article, we develop a unifying framework for the understanding of spatial vegetation patterns in heterogeneous landscapes. While much recent research has focused on self-organised vegetation the prevailing view is still that biological patchiness is mostly due to top-down control by the physical landscape template, disturbances or predators. We(More)
We introduce a simple mathematical model for the description of 'dormancy', a survival strategy used by some bacterial populations that are intermittently exposed to external stress. We focus on the case of the cyanobacterial crust in drylands, exposed to severe water shortage, and compare the fate of ideal populations that are, respectively, capable or(More)
Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern formation theory suggests various scenarios(More)
Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky (BZ) reaction in response to a spatially homogeneous time-periodic perturbation with light. The regions (tongues) in the forcing frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis of the temporal response of(More)
Experiments on a quasi-two-dimensional Belousov–Zhabotinsky (BZ) reaction-diffusion system, periodically forced at approximately twice its natural frequency, exhibit resonant labyrinthine patterns that develop through two distinct mechanisms. In both cases, large amplitude labyrinthine patterns form that consist of interpenetrating fingers of(More)