#### Filter Results:

#### Publication Year

1989

2013

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

A difference field is a field with a distinguished automorphism σ. This paper studies the model theory of existentially closed difference fields. We introduce a dimension theory on formulas, and in particular on difference equations. We show that an arbitrary formula may be reduced into one-dimensional ones, and analyze the possible internal structures on… (More)

- EHUD HRUSHOVSKI
- 1996

- Ehud Hrushovski
- Ann. Pure Appl. Logic
- 2001

- Ehud Hrushovski
- Ann. Pure Appl. Logic
- 1993

Finite structures with few types / by Gregory Cherlin and Ehud Hrushovski. p. cm.– (Annals of mathematics studies ; no. 152) Includes bibliographical references and index. The publisher acknowledges the authors for providing the camera-ready copy from which this book was printed.

- Ehud Hrushovski
- 2004

- EHUD HRUSHOVSKI
- 2009

The questions this manuscript addresses arose in the course of an investigation of the imaginary sorts in ultraproducts of p-adic fields. These were shown to be understandable given the imaginary sorts of certain finite-dimensional vector spaces over the residue field. The residue field is pseudo-finite, and the imaginary elements there were previously… (More)

- E. HRUSHOVSKI
- 2003

We develop a geometric approach to definable sets in differentially closed fields, with emphasis on the question of orthogonality to a given strongly minimal set. Equivalently, within a family of ordinary differential equations, we consider those equations that can be transformed, by differential-algebraic transformations, so as to yield solutions of a… (More)

We study forking, Lascar strong types, Keisler measures and defin-able groups, under an assumption of N IP (not the independence property), continuing aspects of the paper [16]. Among key results are (i) if p = tp(b/A) does not fork over A then the Lascar strong type of b over A coincides with the compact strong type of b over A and any global nonforking… (More)

It is shown that if K is an algebraically closed valued field with valuation ring R, then Th(K) has elimination of imaginaries if sorts are added whose elements are certain cosets in K n of certain definable R-submodules of K n (for all n ≥ 1). The proof involves the development of a theory of independence for unary types, which play the role of 1-types,… (More)