#### Filter Results:

- Full text PDF available (42)

#### Publication Year

1996

2017

- This year (1)
- Last 5 years (10)
- Last 10 years (22)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

In their seminal work which initiated random graph theory Erdös and Rényi discovered that many graph properties have sharp thresholds as the number of vertices tends to infinity. We prove a conjecture of Linial that every monotone graph property has a sharp threshold. This follows from the following theorem. Let Vn(p) = {0, 1}n denote the Hamming space… (More)

Given a monotone graph property P consider p P the proba bility that a random graph with edge probability p will have P The function d p P dp is the key to understanding the threshold behavior of the property P We show that if d p P dp is small corresponding to a non sharp threshold then there is a list of graphs of bounded size such that P can be… (More)

- Ehud Friedgut
- Combinatorica
- 1998

Consider a function f : f0;1g n ! f0;1g. The sensitivity of a point v 2 f0;1g n is jfv 0 : f (v 0) 6 = f (v); dist(v; v 0) = 1gj, i.e. the number of neighbors of the point in the discrete cube on which the value of f diiers. The average sensitivity of f is the average of the sensitivity of all points in f0;1g n. (This can also be interpreted as the sum of… (More)

- Dimitris Achlioptas, Ehud Friedgut
- Random Struct. Algorithms
- 1999

Let f k (n; p) denote the probability that the random graph G(n; p) is k-colorable. We show that for every k 3, there exists d k (n) such that for any > 0, lim n!1 f k (n; d k (n) ? n) = 1 and lim n!1 f k (n; d k (n) + n) = 0 : As a result we conclude that for any given value of n the the chromatic number of G(n; d=n) is concentrated in one value for all… (More)

- Noga Alon, Ehud Friedgut
- J. Comb. Theory, Ser. A
- 2000

Let σ ∈ Sk and τ ∈ Sn be permutations. We say τ contains σ if there exist 1 ≤ x1 < x2 < . . . < xk ≤ n such that τ(xi) < τ(xj) if and only if σ(i) < σ(j). If τ does not contain σ we say τ avoids σ. Let F (n, σ) = |{τ ∈ Sn| τ avoids σ}|. Stanley and Wilf conjectured that for any σ ∈ Sk there exists a constant c = c(σ) such that F (n, σ) ≤ cn for all n. Here… (More)

- Ehud Friedgut
- Combinatorica
- 2008

Let t ≥ 1 be an integer and letA be a family of subsets of {1, 2, . . . n} every two of which intersect in at least t elements. Identifying the sets with their characteristic vectors in {0, 1}n we study the maximal measure of such a family under a non uniform product measure. We prove, for a certain range of parameters, that the t-intersecting families of… (More)

- Ehud Friedgut, Gil Kalai, Noam Nisan
- 2008 49th Annual IEEE Symposium on Foundations of…
- 2008

The Gibbard-Satterthwaite theorem states that every non-trivial voting method among at least 3 alternatives can be strategically manipulated. We prove a quantitative version of the Gibbard-Satterthwaite theorem: a random manipulation by a single random voter will succeed with non-negligible probability for every neutral voting method among 3 alternatives… (More)

We consider powers of regular graphs defined by the weak graph product and give a characterization of maximum-size independent sets for a wide family of base graphs which includes, among others, complete graphs, line graphs of regular graphs which contain a perfect matching and Kneser graphs. In many cases this also characterizes the optimal colorings of… (More)

- Ehud Friedgut, Orna Kupferman, Moshe Y. Vardi
- ATVA
- 2004

The complementation problem for nondeterministic word automata has numerous applications in formal verification. In particular, the language-containment problem, to which many verification problems is reduced, involves complementation. For automata on finite words, which correspond to safety properties, complementation involves determinization. The 2… (More)

- Ehud Friedgut
- Random Struct. Algorithms
- 2005