Learn More
Mammals acquire much of their sensory information by actively moving their sensory organs. Yet, the principles of encoding by active sensing are not known. Here we investigated the encoding principles of active touch by rat whiskers (vibrissae). We induced artificial whisking in anesthetized rats and recorded from first-order neurons in the trigeminal(More)
Perception is usually an active process by which action selects and affects sensory information. During rodent active touch, whisker kinematics influences how objects activate sensory receptors. In order to fully characterize whisker motion, we reconstructed whisker position in 3D and decomposed whisker motion to all its degrees of freedom. We found that,(More)
In the visual system of primates, different neuronal pathways are specialized for processing information about the spatial coordinates of objects and their identity - that is, 'where' and 'what'. By contrast, rats and other nocturnal animals build up a neuronal representation of 'where' and 'what' by seeking out and palpating objects with their whiskers. We(More)
Using their large mystacial vibrissas, rats perform a variety of tasks, including localization and identification of objects. We report on the discriminatory thresholds and behavior of rats trained in a horizontal object localization task. Using an adaptive training procedure, rats learned to discriminate offsets in horizontal (anteroposterior) location(More)
Rats explore their environment by actively moving their whiskers. Recently, we described how object location in the horizontal (front-back) axis is encoded by first-order neurons in the trigeminal ganglion (TG) by spike timing. Here we show how TG neurons encode object location along the radial coordinate, i.e., from the snout outward. Using extracellular(More)
Sensory information is encoded both in space and in time. Spatial encoding is based on the identity of activated receptors, while temporal encoding is based on the timing of activation. In order to generate accurate internal representations of the external world, the brain must decode both types of encoded information, even when processing stationary(More)
Sensory processing and its perception require that local information would also be available globally. Indeed, in the mammalian neocortex, local excitation spreads over large distances via the long-range horizontal connections in layer 2/3 and may spread over an entire cortical area if excitatory polysynaptic pathways are also activated. Therefore, a(More)
Due to recent advances that enable real-time electrophysiological recordings in brains of awake behaving rodents, effective methods for analyzing the large amount of behavioral data thus generated, at millisecond resolution, are required. We describe a semiautomated, efficient method for accurate tracking of head and mystacial vibrissae (whisker) movements(More)
The vibrissal system of the rat is an example of active tactile sensing, and has recently been used as a prototype in construction of touch-oriented robots. Active vibrissal exploration and touch are enabled and controlled by musculature of the mystacial pad. So far, knowledge about motor control of the rat vibrissal system has been extracted from what is(More)
Brains adapt to new situations by retuning their neurons. The most common form of neuronal adaptation, typically observed with repetitive stimulations of passive sensory organs, is depression (responses gradually decrease until stabilized). We studied cortical adaptation when stimuli are acquired by active movements of the sensory organ. In anesthetized(More)