Ehrenfried Zschech

Learn More
Incorporation of all important atom migration driving forces into the mass balance equation and its solution together with solution of the coupled electromagnetics, heat transfer, and elasticity problems allows one to simulate electromigration (EM)-induced degradation in a variety of dual-inlaid Cu interconnect segments characterized by different dominant(More)
Valence EELS combined with STEM provides an approach to determine the dielectric constant of materials in the optical range of frequencies. The paper describes the experimental procedure and discusses the critical aspects of valence electron energy-loss spectroscopy (VEELS) treatment. In particular, the relativistic losses might affect strongly the results,(More)
Potential challenges with managing mechanical stress distributions and the consequent effects on device performance for advanced 3D integrated circuit (IC) technologies are outlined. A set of physics-based compact models for a multi-scale simulation, to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D(More)
A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and(More)
The indentation modulus of thin films of porous organosilicate glass with a nominal porosity content of 30% and thicknesses of 350nm, 200nm, and 46nm is determined with help of atomic force acoustic microscopy (AFAM). This scanning probe microscopy based technique provides the highest possible depth resolution. The values of the indentation modulus obtained(More)
We demonstrate full-field X-ray microscopy using crossed multilayer Laue lenses (MLL). Two partial MLLs are prepared out of a 48 μm high multilayer stack consisting of 2451 alternating zones of WSi2 and Si. They are assembled perpendicularly in series to obtain two-dimensional imaging. Experiments are done in a laboratory X-ray microscope using Cu-Kα(More)
Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids(More)
Structural changes at annealing temperatures (T(an)) of 500-1,100 degrees C were investigated for thin Ta films which were sputter-deposited onto pure Si substrates and onto thermally oxidized Si. In the as-deposited state, the Ta layers predominantly consist of metastable tetragonal beta-Ta, whereby the [001] texture is independent of the substrate(More)
For the first time, the three-dimensional (3D) internal structure of naturally produced Didymosphenia geminata frustules were nondestructively visualized at sub-100 nm resolution. The well-optimized hierarchical structures of these natural organisms provide insight that is needed to design novel, environmentally friendly functional materials. Diatoms, which(More)