Egor Y. Plotnikov

Learn More
This review collects data on the influence of intracellular and extracellular acidosis on neuronal viability and the effect of acidosis on neuronal damage progressing under brain ischemia/hypoxia. Particular attention is devoted to the involvement of ionotropic glutamic receptors and acid-sensitive ion channel 1a in these processes.
The goals of the study were: (1) to explore the communication between human mesenchymal stem cells (MSC) and rat cardiac myocytes resulting in differentiation of the stem cells and, (2) to evaluate the role of mitochondria in it. Light and fluorescence microscopy as well as scanning electron microscopy revealed that after co-cultivation, cells formed(More)
Using a fluorescent probe for superoxide, hydroethidine, we have demonstrated that glucose deprivation (GD) activates production of reactive oxygen species (ROS) in cultured cerebellar granule neurons. ROS production was insensitive to the blockade of ionotropic glutamate channels by MK-801 (10 microM) and NBQX (10 microM). Inhibitors of mitochondrial(More)
BACKGROUND Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular(More)
We explored the neuroprotective properties of natural plant-derived antioxidants plastoquinone and thymoquinone (2-demethylplastoquinone derivative) modified to be specifically accumulated in mitochondria. The modification was performed through chemical conjugation of the quinones with penetrating cations: Rhodamine 19 or tetraphenylphosphonium.(More)
Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was(More)
We found that 60-min glucose deprivation leads to progressive decrease in the mitochondrial membrane potential and increase in [Ca(2+)](i) in cultured cerebellar granule neurons. The latter effect was fully reversible, returning to the basal level 60 min after restoration of normal glucose level in the incubation medium, whereas mitochondrial membrane(More)
We studied the influence of ischemia/reperfusion of the middle cerebral artery in the rat's brain on the deferred violation of cognitive functions of the brain which are similar to main symptoms observed in the development of Alzheimer's disease. Using 8-hose radial labyrinth we demonstrated that 6 months after incidence of cerebral ischemia a significant(More)
  • 1