Learn More
Resting-state or intrinsic connectivity network functional magnetic resonance imaging provides a new tool for mapping large-scale neural network function and dysfunction. Recently, we showed that behavioural variant frontotemporal dementia and Alzheimer's disease cause atrophy within two major networks, an anterior 'Salience Network' (atrophied in(More)
Neurodegenerative diseases target large-scale neural networks. Four competing mechanistic hypotheses have been proposed to explain network-based disease patterning: nodal stress, transneuronal spread, trophic failure, and shared vulnerability. Here, we used task-free fMRI to derive the healthy intrinsic connectivity patterns seeded by brain regions(More)
Intrinsic or resting state functional connectivity MRI and structural covariance MRI have begun to reveal the adult human brain's multiple network architectures. How and when these networks emerge during development remains unclear, but understanding ontogeny could shed light on network function and dysfunction. In this study, we applied structural(More)
BACKGROUND We sought to describe the antemortem clinical and neuroimaging features among patients with frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP). METHODS Subjects were recruited from a consecutive series of patients with a primary neuropathologic diagnosis of FTLD-TDP and antemortem MRI. Twenty-eight patients met(More)
Several independent studies have demonstrated that small amounts of in-scanner motion systematically bias estimates of resting-state functional connectivity. This confound is of particular importance for studies of neurodevelopment in youth because motion is strongly related to subject age during this period. Critically, the effects of motion on(More)
Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial(More)
Adolescence is characterized by rapid development of executive function. Working memory (WM) is a key element of executive function, but it is not known what brain changes during adolescence allow improved WM performance. Using a fractal n-back fMRI paradigm, we investigated brain responses to WM load in 951 human youths aged 8-22 years. Compared with more(More)
OBJECTIVE Progressive supranuclear palsy (PSP) has been conceptualized as a large-scale network disruption, but the specific network targeted has not been fully characterized. We sought to delineate the affected network in patients with clinical PSP. METHODS Using task-free functional magnetic resonance imaging, we mapped intrinsic connectivity to the(More)
Puberty is the defining biological process of adolescent development, yet its effects on fundamental properties of brain physiology such as cerebral blood flow (CBF) have never been investigated. Capitalizing on a sample of 922 youths ages 8-22 y imaged using arterial spin labeled MRI as part of the Philadelphia Neurodevelopmental Cohort, we studied(More)
OBJECTIVE Disruption of executive function is present in many neuropsychiatric disorders. However, determining the specificity of executive dysfunction across these disorders is challenging given high comorbidity of conditions. Here the authors investigate executive system deficits in association with dimensions of psychiatric symptoms in youth using a(More)