Efrat Barbiro-Michaely

Learn More
Normal mitochondrial function in the process of metabolic energy production is a key factor in maintaining cellular activities. Many pathological conditions in animals, as well as in patients, are directly or indirectly related to dysfunction of the mitochondria. Monitoring the mitochondrial activity by measuring the autofluorescence of NADH has been the(More)
Normal mitochondrial function is a critical factor in maintaining cellular homeostasis in various organs of the body. Due to the involvement of mitochondrial dysfunction in many pathological states, the real-time in vivo monitoring of the mitochondrial metabolic state is crucially important. This type of monitoring in animal models as well as in patients(More)
BACKGROUND One of the major causes of transplanted organs' dysfunction is ischemia-reperfusion injury, where mitochondrial dysfunction is the primary contributor to cell damage. Mitochondrial NADH fluorescence reliably describes intracellular oxygen deficiency and mitochondrial function. Therefore, its monitoring at the tissue level, together with other(More)
Middle cerebral artery occlusion (MCAO), which leads to focal cerebral ischemia, serves as an experimental model for brain stroke. There is a large variation in protocols and techniques using the MCAO model, which may affect the outcomes seen in different studies. The current work presents and compares the diverse responses in mitochondrial NADH and(More)
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red(More)
BACKGROUND Under O(2) imbalance in the body, blood redistribution occurs between more vital organs and less vital organs. This response is defined as the "brain-sparing effect". The study's aim was to develop a new rat model for simultaneous real-time monitoring of tissue viability in a highly vital organ, the brain, and a less vital organ, the small(More)
BACKGROUND Under emergency situations, the protection of the most vital organs in the body, the brain and the heart, may result in a decrease in tissue perfusion, mitochondrial dysfunction and energetic failure, in "less-vital" organs (skin, G-I tract, kidney etc.). One of these pathways includes the secretion of epinephrine and norepinephrine. The aim of(More)
The 'Cushing Response' is a significant phenomenon associated with elevated ICP. The purpose of our study was to examine the effects of the intracranial hypertension level and duration on the cerebral tissue physiology, using a Multiprobe assembly (MPA). The parameters monitored simultaneously included ICP, CBF, mitochondrial NADH redox state, extracellular(More)
Monitoring the mitochondrial function, alone or together with microcirculatory blood flow, volume and hemoglobin oxygenation in patients, is very rare. The integrity of microcirculation and mitochondrial activity is a key factor in keeping normal cellular activities. Many pathological conditions in patients are directly or indirectly related to dysfunction(More)