Learn More
Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a(More)
The structural similarity image quality paradigm is based on the assumption that the human visual system is highly adapted for extracting structural information from the scene, and therefore a measure of structural similarity can provide a good approximation to perceived image quality. This paper proposes a multi-scale structural similarity method, which(More)
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter(More)
We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images(More)
Electrophysiological studies indicate that neurons in the middle temporal (MT) area of the primate brain are selective for the velocity of visual stimuli. This paper describes a computational model of MT physiology, in which local image velocities are represented via the distribution of MT neuronal responses. The computation is performed in two stages,(More)
— Objective methods for assessing perceptual image quality traditionally attempt to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a(More)
It has long been assumed that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical properties of the signals to which they are exposed. Attneave (1954)Barlow (1961) proposed that information theory could provide a link between environmental statistics and neural responses through the concept of coding(More)
The pattern of local image velocities on the retina encodes important environmental information. Although humans are generally able to extract this information, they can easily be deceived into seeing incorrect velocities. We show that these 'illusions' arise naturally in a system that attempts to estimate local image velocity. We formulated a model of(More)
Statistical dependencies in the responses of sensory neurons govern both the amount of stimulus information conveyed and the means by which downstream neurons can extract it. Although a variety of measurements indicate the existence of such dependencies, their origin and importance for neural coding are poorly understood. Here we analyse the functional(More)