Learn More
Hypertension and kidney damage in the double transgenic rat (dTGR) harboring both human renin and human angiotensinogen genes are dependent on the human components of the renin angiotensin system. We tested the hypothesis that monocyte infiltration and increased adhesion molecule expression are involved in the pathogenesis of kidney damage in dTGR. We also(More)
We recently reported that the activation of nuclear factor-kappaB (NF-kappaB) promotes inflammation in rats harboring both human renin and angiotensinogen genes (double-transgenic rats [dTGR]). We tested the hypothesis that the antioxidant pyrrolidine dithiocarbamate (PDTC) inhibits NF-kappaB and ameliorates renal and cardiac end-organ damage. dTGR feature(More)
Endothelial dysfunction is associated with hypertension, hypercholesterolemia, and heart failure. We tested the hypothesis that spontaneously diabetic Goto-Kakizaki (GK) rats, a model for type 2 diabetes, exhibit endothelial dysfunction. Rats also received a high-sodium diet (6% NaCl [wt/wt]) and chronic angiotensin type 1 (AT(1)) receptor blockade (10(More)
The blood pressure-independent effects of angiotensin II (Ang II) were examined in double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes, in which the end-organ damage is due to the human components of the renin angiotensin system. Triple-drug therapy (hydralazine 80 mg/L, reserpine 5 mg/L, and hydrochlorothiazide 25 mg/L in(More)
The effects on blood pressure and the development of cardiac hypertrophy of sodium chloride (regular salt) and a novel potassium-, magnesium-, and l-lysine-enriched salt alternative, which in a previous study prolonged the life span of hypertensive rats nearly threefold as compared with the animals receiving regular salt, were compared both in spontaneously(More)
Clinical and experimental studies have established an association between high sodium intake and arterial hypertension. The renal mechanisms resulting in impaired sodium excretion in hypertension-prone subjects are not clear. In hypertension-prone rats, high blood pressure results in increased renal mass and hemodynamic changes, both of which may alter(More)
Angiotensin II (Ang II) induces mitochondrial dysfunction. We tested whether Ang II alters the "metabolomic" profile. We harvested hearts from 8-week-old double transgenic rats harboring human renin and angiotensinogen genes (dTGRs) and controls (Sprague-Dawley), all with or without Ang II type 1 receptor (valsartan) blockade. We used gas chromatography(More)
We studied the effect of apomorphine, a dopamine receptor agonist, on epileptic photosensitivity in 7 patients with progressive myoclonus epilepsy (PME). Specific diagnoses included Baltic PME (Unverricht-Lundborg disease), Lafora disease, Kufs' disease, juvenile neuroaxonal dystrophy, and action myoclonus-renal failure syndrome; 2 patients had PME of(More)
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of(More)
Angiotensin (Ang) II-induced organ damage has fascinated students of hypertension since the work of Wilson and Byrom. We are investigating a double transgenic rat (dTGR) model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by(More)