Edwin J Schwalbach

Learn More
Semiconductor nanowires show promise for many device applications, but controlled doping with electronic and magnetic impurities remains an important challenge. Limitations on dopant incorporation have been identified in nanocrystals, raising concerns about the prospects for doping nanostructures. Progress has been hindered by the lack of a method to(More)
The vapor-liquid-solid (VLS) process of semiconductor nanowire growth is an attractive approach to low-dimensional materials and heterostructures because it provides a mechanism to modulate, in situ, nanowire composition and doping, but the ultimate limits on doping control are ultimately dictated by the growth process itself. Under widely used conditions(More)
Phase diagrams accounting for capillarity and surface stress in VLS-grown nanowires have been calculated, and linearized forms for the compositions of the solid and liquid are given. The solid-vapor interfacial energy causes a significant depression of the liquidus, and the impurity concentration in the wire decreases with decreasing wire diameter.(More)
Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show(More)
  • 1