Edwin E Budzinski

Learn More
This review surveys the work that has been done on free radical-induced DNA double lesions. Double lesions consist of two modifications of the DNA in close proximity. Double lesions can be generated by a single free radical-initiating event and the mechanism of formation often involves the participation of guanine. The identification of double lesions in(More)
The hydrolysis by nuclease P1 of the 16 common deoxydinucleoside monophosphates was examined. The rates of hydrolysis of phosphodiester bond differ by more than two orders of magnitude; dinucleotide monophosphates of the type d(TpN) being most resistant and d(GpN) being next most resistant. The profiles of a mixture of the 16 common dinucleoside(More)
A new type of tandem base lesion has been observed in d(CpGpTpA) X-irradiated in aqueous solution. The lesion is attributed to the formation of a covalent bond between the C8 carbon atom of guanine and the methyl carbon atom of thymine. This tandem base lesion is formed in the absence of oxygen. It is the main product produced by ionizing radiation under(More)
A single free radical-initiating event can produce a pair of base lesions in DNA oligomers exposed to ionizing radiation. Whereas double base lesions have been observed previously, the present study shows that double lesions may sometimes consist of a base lesion and an associated strand break. The mechanism for the formation of double lesions is discussed.(More)
A new tandem base lesion has been identified in two DNA oligomers, namely d(GpT) and d(CpGpTpA), exposed to X-irradiation in deoxygenated aqueous solution. In this lesion the C6 carbon atom of thymine is hydroxylated and a covalent link is formed between the C5 carbon atom of thymine and the C8 carbon atom of the adjacent guanine base. In addition, further(More)
Previously, double lesions in which two adjacent bases are modified were identified in DNA oligomers exposed in solution to ionizing radiation. However, the formation of such lesions in polymer DNA had not been demonstrated. Using reference oligomer containing a specific double lesion and employing liquid chromatography-mass spectrometry (LC-MS), it was(More)
Free radicals interact with DNA bases to produce secondary radicals. The secondary radicals are reactive species and tend to interact with neighboring bases, resulting in DNA lesions with two adjacent modified bases. In this study the DNA oligomers d(CpApTpG) and d(CpGpTpA) were exposed to free radicals generated in anoxic aqueous solution by X irradiation.(More)
BACKGROUND A long-standing hypothesis is that oxidative stress is a risk factor for cancer. Support for this hypothesis comes from observations of higher levels of oxidative damage in the DNA of WBC of cancer patients compared with healthy controls. METHODS Two generally overlooked types of DNA damage, the formamide modification and the thymine glycol(More)
A different approach to the measurement of DNA damage has been developed based on the fact that many lesions can be excised from DNA in the form of modified dinucleoside monophosphates. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used in conjunction with isotopically labeled internal standards to quantify the lesion. The method has several(More)
Evidence is presented for the formation of products in irradiated dinucleoside monophosphates in which both bases are damaged. The dinucleoside monophosphates d(GpT), d(GpC), d(TpG) and d(CpG) were X-irradiated in oxygenated aqueous solution. Product identification was by NMR spectroscopy. In products containing double base lesions, guanine is converted to(More)