Learn More
Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and(More)
Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions(More)
Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are(More)
NF-kappaB is an inducible transcription factor activated in many different cell types by inflammatory and stress signals. The transcription of a wide variety of NF-kappaB genes is regulated by the coordinated action of transcription co-activators and co-repressors. Previously we identified Myb binding protein 1a (MYBBP1a) as an interaction partner of the(More)
Genomes are organized into high-level 3-dimensional structures, and DNA elements separated by long genomic distances could functionally interact. Many transcription factors bind to regulatory DNA elements distant from gene promoters. While distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci,(More)
A major question in transcription factor (TF) biology is why a TF binds to only a small fraction of motif eligible binding sites in the genome. Using the estrogen receptor-α as a model system, we sought to explicitly define parameters that determine TF-binding site selection. By examining 12 genetic and epigenetic parameters, we find that an energetically(More)
Persistent androgen receptor (AR) signaling is the key driving force behind progression and development of castration-resistant prostate cancer (CRPC). In many patients, AR COOH-terminal truncated splice variants (ARvs) play a critical role in contributing to the resistance against androgen depletion therapy. Unfortunately, clinically used antiandrogens(More)
Many cellular signaling pathways ultimately control specific patterns of gene expression in the nucleus through a variety of signal-regulated transcription factors (TFs), including nuclear hormone receptors (NRs). The advent of genomic technologies for examining signal-regulated transcriptional responses and TF binding on a genomic scale has dramatically(More)
Protein acetylation is important in regulating DNA-templated processes specifically and protein-protein interactions more generally in eukaryotes. The geminivirus movement protein NSP is essential for virus movement, shuttling the viral DNA genome between the nucleus and the cytoplasm. We have identified a novel Arabidopsis protein, AtNSI, that interacts(More)