Learn More
Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and(More)
Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions(More)
A major question in transcription factor (TF) biology is why a TF binds to only a small fraction of motif eligible binding sites in the genome. Using the estrogen receptor-α as a model system, we sought to explicitly define parameters that determine TF-binding site selection. By examining 12 genetic and epigenetic parameters, we find that an energetically(More)
Genomes are organized into high-level 3-dimensional structures, and DNA elements separated by long genomic distances could functionally interact. Many transcription factors bind to regulatory DNA elements distant from gene promoters. While distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci,(More)
Transcription factors (TFs) do not function alone but work together with other TFs (called co-TFs) in a combinatorial fashion to precisely control the transcription of target genes. Mining co-TFs is thus important to understand the mechanism of transcriptional regulation. Although existing methods can identify co-TFs, their accuracy depends heavily on the(More)
Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are(More)
BACKGROUND The growth of sequencing-based Chromatin Immuno-Precipitation studies call for a more in-depth understanding of the nature of the technology and of the resultant data to reduce false positives and false negatives. Control libraries are typically constructed to complement such studies in order to mitigate the effect of systematic biases that might(More)
Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor a (ERa) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERa binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5(More)
Although de novo motifs can be discovered through mining over-represented sequence patterns, this approach misses some real motifs and generates many false positives. To improve accuracy, one solution is to consider some additional binding features (i.e., position preference and sequence rank preference). This information is usually required from the user.(More)