Edward W. Hsu

Learn More
BACKGROUND Accurate interpretations of cardiac functions require precise structural models of the myocardium, but the latter is not available always and for all species. Although scaling or substitution of myocardial fiber information from alternate species has been used in cardiac functional modeling, the validity of such practice has not been tested. (More)
Although promising for visualizing the structure of ordered tissues, MR diffusion tensor imaging (DTI) has been hampered by long acquisition time and low spatial resolution associated with its inherently low signal-to-noise ratio (SNR). Moreover, the uncertainty in the DTI measurements has a direct impact on the accuracy of structural renderings such as(More)
We use matrix model results to investigate the Sine-Gordon model coupled to two dimensional gravity. For relevant (in the RG sense) potentials, we show that the c = 1 string, which appears in the ultraviolet limit of this model, flows to a set of decoupled c = 0 (pure gravity) models in the infrared. The torus partition sum, which was argued previously to(More)
OBJECTIVE Adipose-derived stem cells are an alternative stem cell source for CNS therapies. The goals of the current study were to label adipose-derived stem cells with superparamagnetic iron oxide (SPIO) particles, to use MRI to guide the transplantation of adipose-derived stem cells in middle cerebral artery occlusion (MCAO)-injured mice, and to localize(More)
Diffusion tensor imaging is a variation of magnetic resonance imaging that measures the diffusion of water in tissues. This can help measure and quantify a tissue's orientation and structure, making it an ideal tool for examining cerebral white matter and neural fiber tracts. It is only beginning to be utilized in psychiatric research. This article reviews(More)
The relative utility of 3D, microscopic resolution assessments of fixed mouse myocardial structure via diffusion tensor imaging is demonstrated in this study. Isotropic 100-microm resolution fiber orientation mapping within 5.5 degrees accuracy was achieved in 9.1 hr scan time. Preliminary characterization of the diffusion tensor primary eigenvector reveals(More)
Tagged MRI and finite-element (FE) analysis are valuable tools in analyzing cardiac mechanics. To determine systolic material parameters in three-dimensional stress-strain relationships, we used tagged MRI to validate FE models of left ventricular (LV) aneurysm. Five sheep underwent anteroapical myocardial infarction (25% of LV mass) and 22 wk later(More)
Mechanical factors such as deformation and strain are thought to play important roles in the maintenance, repair, and degeneration of soft tissues. Determination of soft tissue static deformation has traditionally only been possible at a tissue's surface, utilizing external markers or instrumentation. Texture correlation is a displacement field measurement(More)
Non-invasive imaging techniques are highly desirable as an alternative to conventional biopsy for the characterization of the remodeling of tissues associated with disease progression, including end-stage heart failure. Cardiac diffusion tensor imaging (DTI) has become an established method for the characterization of myocardial microstructure. However, the(More)
This article investigates the quantitative predictive capabilities of region-specific models by comparing experimental electrograms obtained from in vivo mapping of the ventricular free wall with those obtained through simulation of a region specific three-dimensional bidomain model that incorporates measured fiber orientations. Epicardial electrograms were(More)