Learn More
Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from(More)
This study used an MCF-7 cell based ER-alpha reporter gene assay to assess chemical interactions within the following ternary mixtures: (1) three synthetic pesticides, methoxychlor (MXC), o,p-DDT, and dieldrin; (2) three polyaromatic hydrocarbons, benzo[a]pyrene (BAP), 1,2-benzanthracene (BENZ), and chrysene (CHRY); and (3) an endogenous estrogen,(More)
Assessing for interactions among chemicals in a mixture involves the comparison of actual mixture responses to those predicted under the assumption of zero interaction (additivity), based on individual chemical dose-response data. However, current statistical methods do not adequately account for differences in the shapes of the dose-response curves of the(More)
This study evaluated propylene glycol monomethyl ether (PGME) in a rat 2-generation reproduction study, which included non-traditional study end points, such as sperm count and motility, developmental landmarks, estrous cyclicity, and weanling organ weights. Groups of 30 male and 30 female Sprague-Dawley rats (6-weeks-old) were exposed to 0, 300, 1000, or(More)
BACKGROUND Integrative testing strategies (ITSs) for potential endocrine activity can use tiered in silico and in vitro models. Each component of an ITS should be thoroughly assessed. OBJECTIVES We used the data from three in vitro ToxCast™ binding assays to assess OASIS, a quantitative structure-activity relationship (QSAR) platform covering both(More)
There is great interest in assessing the in vivo toxicity of chemicals using nonanimal alternatives. However, acute mammalian toxicity is not adequately predicted by current in silico or in vitro approaches. Mechanisms of acute toxicity are likely conserved across invertebrate, aquatic, and mammalian species, suggesting that dose-response concordance would(More)
  • 1