Learn More
Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules. The force-generating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of an approximately(More)
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did(More)
We have explored a model of crossbridge kinetics that explains many of the effects on steady-state muscle contraction of ligands that bind to the nucleotide site on myosin. The mathematical model follows the basic framework for crossbridge function first established by A. F. Huxley. In the model, detached crossbridges initially bind in a weakly Attached,(More)
1. The effects of phosphate and protons on the mechanics and energetics of muscle contraction have been investigated using glycerinated rabbit psoas muscle. 2. Fibres were fully activated by addition of Ca2+ (pCa 4-5) at 10 degrees C. The velocities of contraction were measured in isotonic load clamps, and the velocities of unloaded fibres were measured by(More)
We have measured the effect of phosphate (Pi) on the tension and maximum shortening velocity of permeable rabbit psoas fibers. Work in a number of laboratories has established that addition of phosphate (0–25 mM) to active muscle fibers at physiological MgATP concentrations decreases isometric tension with little effect on the maximum shortening velocity.(More)
Using in vitro motility assays, we examined the sliding velocity of actin filaments generated by pairwise mixings of six different types of actively cycling myosins. In isolation, the six myosins translocated actin filaments at differing velocities. We found that only small proportions of a more slowly translating myosin type could significantly inhibit the(More)
A hallmark of histone H3 lysine 9 (H3K9)-methylated heterochromatin, conserved from the fission yeast Schizosaccharomyces pombe to humans, is its ability to spread to adjacent genomic regions. Central to heterochromatin spread is heterochromatin protein 1 (HP1), which recognizes H3K9-methylated chromatin, oligomerizes and forms a versatile platform that(More)
Recent experimental work suggests that under normal conditions cell sorting plays an important part in maintaining and re-establishing the axial pattern of cell types in the slug stage of the cellular slime mold Dictyostelium discoideum. Following removal of the anterior zone of the slug, anterior-like cells that are normally distributed throughout the(More)
During muscle contraction, work is generated when a myosin cross-bridge attaches to an actin filament and exerts a force on it through some power-stroke distance, h. At the end of this power stroke, attached myosin heads are carried into regions where they exert a negative force on the actin filament (the drag stroke) and where they are released rapidly(More)
We have investigated the effects of the orthophosphate (P(i)) analog orthovanadate (Vi) on maximum shortening velocity (Vmax) in activated, chemically skinned, vertebrate skeletal muscle fibers. Using new "temperature-jump" protocols, reproducible data can be obtained from activated fibers at high temperatures, and we have examined the effect of increased(More)