Learn More
There has never been a wholesale way of identifying neurons that are monosynaptically connected either to some other cell group or, especially, to a single cell. The best available tools, transsynaptic tracers, are unable to distinguish weak direct connections from strong indirect ones. Furthermore, no tracer has proven potent enough to label any connected(More)
The basic laminar organization of excitatory local circuitry in the primary visual cortex of the macaque monkey is similar to that described previously in the cat's visual cortex (Gilbert 1983). This circuitry is described here in the context of a two-level model that distinguishes between feedforward and feedback connections. Embedded within this basic(More)
Excitatory cortical neurons form fine-scale networks of precisely interconnected neurons. Here we tested whether inhibitory cortical neurons in rat visual cortex might also be connected with fine-scale specificity. Using paired intracellular recordings and cross-correlation analyses of photostimulation-evoked synaptic currents, we found that fast-spiking(More)
Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated on and integrated in the cortex to provide a(More)
We have constructed a deletion-mutant rabies virus encoding EGFP and find it to be an excellent tool for studying detailed morphology and physiology of neurons projecting to injection sites within the mammalian brain. The virus cannot spread beyond initially infected cells yet, unlike other viral vectors, replicates its core within them. The cells therefore(More)
The specificity of cortical neuron connections creates columns of functionally similar neurons spanning from the pia to the white matter. Here we investigate whether there is an additional, finer level of specificity that creates subnetworks of excitatory neurons within functional columns. We tested for fine-scale specificity of connections to cortical(More)
The cerebral cortex has diverse types of inhibitory neurons. In rat cortex, past research has shown that parvalbumin (PV), somatostatin (SOM), calretinin (CR), and cholecystokinin (CCK) label four distinct chemical classes of GABAergic interneurons. However, in contrast to rat cortex, previous studies indicate that there is significant colocalization of SOM(More)
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing(More)
To establish the mouse as a genetically tractable model for high-order visual processing, we characterized fine-scale retinotopic organization of visual cortex and determined functional specialization of layer 2/3 neuronal populations in seven retinotopically identified areas. Each area contains a distinct visuotopic representation and encodes a unique(More)
  • E M Callaway
  • 1998
Previous studies have demonstrated that axonal arbors specific for the four main cortical layers - 2/3, 4, 5, and 6 - develop precisely from the outset using activity-independent cues. In macaque primary visual cortex (V1), layer 2/3 is subdivided into layers named 2/3A, 3B, 4A, and 4B, and layer 4 is subdivided into 4Calpha and 4Cbeta. Individual neurons(More)