Learn More
A common problem in brain imaging is how to most appropriately coregister anatomical and functional data sets into a common space. For surface-based recordings such as the event related optical signal (EROS), near-infrared spectroscopy (NIRS), event-related potentials (ERPs), and magnetoencephalography (MEG), alignment is typically done using either (1) a(More)
Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger(More)
Neuroimaging data emphasize that older adults often show greater extent of brain activation than younger adults for similar objective levels of difficulty. A possible interpretation of this finding is that older adults need to recruit neuronal resources at lower loads than younger adults, leaving no resources for higher loads, and thus leading to(More)
The brain's vasculature is likely to be subjected to the same age-related physiological and anatomical changes affecting the rest of the cardiovascular system. Since aerobic fitness is known to alleviate both cognitive and volumetric losses in the brain, it is important to investigate some of the possible mechanisms underlying these beneficial changes. Here(More)
This article presents a new approach to designing brain–computer interfaces (BCIs) that explicitly accounts for both the uncertainty of neural signals and the important role of sensory feedback. This approach views a BCI as the means by which users communicate intent to an external device and models intent as a string in an ordered symbolic language. This(More)
Sound repetition typically reduces auditory N1 amplitudes, more so at higher rates. This has been attributed to refractoriness of N1 generators. However, evidence that N1 attenuation is delayed 300-400 ms after the first occurrence of a repeated sound suggests an alternative process, such as inhibition, that requires 300-400 ms to become fully operational.(More)
Transcranial magnetic stimulation (TMS) is a widely used experimental and clinical technique that directly induces activity in human cortex using magnetic fields. However, the neural mechanisms of TMS-induced activity are not well understood. Here, we introduce a novel method of imaging TMS-evoked activity using a non-invasive fast optical imaging tool, the(More)
Changes in attention allocation with complex task learning reflect processing automatization and more efficient control. We studied these changes using ERP and EEG spectral analyses in subjects playing Space Fortress, a complex video game comprising standard cognitive task components. We hypothesized that training would free up attentional resources for a(More)
The event-related optical signal (EROS) uses near-infrared light to study changes in neuronal optical properties in response to stimuli and endogenous events. EROS responses to electrical stimulation of the median nerve at 1, 5, and 8 Hz were collected from 80 channels in 7 subjects. Optical recording channels were spatially aligned by co-registering the(More)
Behavioral and physiological studies have indicated the existence of a temporal window of auditory integration (TWI), within which similar sounds are perceptually grouped. The current study exploits the combined temporal and spatial resolution of fast optical imaging (the event-related optical signal, EROS) to show that brain activity elicited by sounds(More)