Learn More
Direct electrical coupling between neurons can be the result of both electrotonic current transfer through gap junctions and extracellular fields. Intracellular recordings from CA1 pyramidal neurons of rat hippocampal slices showed two different types of small-amplitude coupling potentials: short-duration (5 ms) biphasic spikelets, which resembled(More)
The bidomain equations are the most complete description of cardiac electrical activity. Their numerical solution is, however, computationally demanding, especially in three dimensions, because of the fine temporal and spatial sampling required. This paper methodically examines computational performance when solving the bidomain equations. Several(More)
The bidomain equations are considered to be one of the most complete descriptions of the electrical activity in cardiac tissue, but large scale simulations, as resulting from discretization of an entire heart, remain a computational challenge due to the elliptic portion of the problem, the part associated with solving the extracellular potential. In such(More)
RATIONALE T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. OBJECTIVE This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca(2+) sparks, discrete events that(More)
The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue but are computationally expensive, limiting the size of the problem which can be modeled. The purpose of this study is to determine more efficient ways to solve the elliptic portion of the bidomain equations, the most computationally expensive part of the(More)
Significant advancements in imaging technology and the dramatic increase in computer power over the last few years broke the ground for the construction of anatomically realistic models of the heart at an unprecedented level of detail. To effectively make use of high-resolution imaging datasets for modeling purposes, the imaged objects have to be(More)
Coupling of smooth muscle cells is important for coordination of gastrointestinal motility. Small structures called peg-and-socket junctions (PSJs) have been found between muscle cells and may play a role in electrical coupling due to extracellular potassium accumulation in the narrow cleft between the muscle cells. A model was developed in which an(More)
The exact mechanisms by which defibrillation shocks excite cardiac tissue far from both the electrodes and heart surfaces require elucidation. Bidomain theory explains this phenomena through the existence of intramural virtual electrodes (VEs), caused by discontinuities in myocardial tissue structure. In this study, we assess the modeling components(More)
The sawtooth effect refers to how one end of a cardiac cell is depolarized, while the opposite end is hyperpolarized, upon exposure to an exogenous electric field. Although hypothesized, it has not been observed in tissue. The Purkinje system is a one-dimensional (1-D) cable-like system residing on the endocardial surface of the heart and is the most(More)
Electrogram analysis is important in clinical and experimental settings. Activation recovery interval (ARI) has been used to measure ventricular action potential duration (APD) but its suitability for the atria has not been addressed. Mapping of atrial repolarization may be especially important during nerve stimulation since large heterogenous APD changes(More)