Learn More
A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite(More)
Although light is the principal zeitgeber to the mammalian circadian system, other cues can be shown to have a potent resetting effect on the clock of both adult and perinatal mammals. Nonphotic entrainment may have both biological and therapeutic significance. This review focuses on the effect of behavioral arousal as a nonphotic cue and the neurochemical(More)
Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the(More)
It is well established that the circadian clock of the suprachiasmatic nuclei (SCN) is entrained by light. More recently, the potent effects of arousing, non-photic cues on the clock have been recognized. The neural mediators of non-photic entrainment are yet to be identified. To examine the contribution of the thalamic intergeniculate leaflet (IGL) and its(More)
Expression of group III metabotropic glutamate receptors (mGluR) was established by RT-PCR and immunocytochemistry on a cultured clonal human neural stem/progenitor cell (hNSPC) line derived from fetal ventral mesencephalon (VM). Selective activation of these receptors by the group III mGluR agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP4) prevented(More)
Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model,(More)
Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG(More)
To validate and add value to non-invasive imaging techniques, the corresponding histology is required to establish biological correlates. We present an efficient, semi-automated image-processing pipeline that uses immunohistochemically stained sections to reconstruct a 3D brain volume from 2D histological images before registering these with the(More)
Neurological damage, due to conditions such as stroke, results in a complex pattern of structural changes and significant behavioural dysfunctions; the automated analysis of magnetic resonance imaging (MRI) and discovery of structural-behavioural correlates associated with these disorders remains challenging. Voxel lesion symptom mapping (VLSM) has been(More)
A variety of mouse models have been developed that express mutant huntingtin (mHTT) leading to aggregates and inclusions that model the molecular pathology observed in Huntington's disease. Here we show that although homozygous HdhQ150 knock-in mice developed motor impairments (rotarod, locomotor activity, grip strength) by 36 weeks of age, cognitive(More)
  • 1