Learn More
Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac(More)
Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(0001) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent(More)
A strong substrate-graphite bond is found in the first all-carbon layer by density functional theory calculations and x-ray diffraction for few graphene layers grown epitaxially on SiC. This first layer is devoid of graphene electronic properties and acts as a buffer layer. The graphene nature of the film is recovered by the second carbon layer grown on(More)
Graphene nanoribbons will be essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square. Here we show that(More)
While numerous methods have been proposed to produce semiconducting graphene, a significant band gap has never been demonstrated. The reason is that, regardless of the theoretical gap formation mechanism, subnanometer disorder prevents the required symmetry breaking necessary to make graphene semiconducting. In this work, we show for the first time that(More)
Surface x-ray scattering and scanning-tunneling microscopy experiments reveal novel coarsening behavior of Pb nanocrystals grown on Si(111)-(7 x 7). It is found that quantum size effects lead to the breakdown of the classical Gibbs-Thomson analysis. This is manifested by the lack of scaling of the island densities. In addition, island decay times tau are(More)
We show experimentally that multilayer graphene grown on the carbon terminated SiC(0001[over ]) surface contains rotational stacking faults related to the epitaxial condition at the graphene-SiC interface. Via first-principles calculation, we demonstrate that such faults produce an electronic structure indistinguishable from an isolated single graphene(More)
In order to engineer a band gap into graphene, covalent bond-forming reactions can be used to change the hybridization of the graphitic atoms from sp(2) to sp(3), thereby modifying the conjugation length of the delocalized carbon lattice; similar side-wall chemistry has been shown to introduce a band gap into metallic single-walled carbon nanotubes. Here we(More)
After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas(More)
We present a structural analysis of the multi-layer graphene-4HSiC(000 ¯ 1) system using Surface X-Ray Reflectivity. We show for the first time that graphene films grown on the C-terminated (000 ¯ 1) surface have a graphene-substrate bond length that is very short (1.62Å). The measured distance rules out a weak Van der Waals interaction to the substrate and(More)