Learn More
UNLABELLED This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport(More)
Two major physiological roles for the pineal hormone melatonin (MEL) have been identified in vertebrates: the hormone influences circadian rhythmicity and regulates seasonal responses to changes in day length. These effects of MEL are thought to be due to interaction with specific, high affinity MEL receptors in the suprachiasmatic nucleus (SCN) and(More)
Alzheimer disease (AD) is characterized by deposits of an aggregated 42-amino-acid beta-amyloid peptide (beta AP) in the brain and cerebrovasculature. After a concentration-dependent lag period during in vitro incubations, soluble preparations of synthetic beta AP slowly form fibrillar aggregates that resemble natural amyloid and are measurable by(More)
Sleep disruption and other circadian rhythm disturbances are frequently seen in dementia patients. In this study, we examined the suprachiasmatic nucleus (SCN), the putative site of the hypothalamic circadian pacemaker, to determine the nature and degree of pathologic changes caused by severe dementia. Neuropathologic examination indicated that among 30(More)
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this(More)
Upregulation of certain growth factors in the central nervous system can alter brain fluid dynamics. Hydrocephalus was produced in adult Sprague-Dawley rats by infusing recombinant basic fibroblast growth factor (FGF-2) at 1 microg/day into a lateral ventricle for 2, 3, 5, or 10-12 days. Lateral and third ventricular enlargement progressively increased from(More)
Serologic studies of children with Tourette syndrome (TS) have detected anti-neuronal antibodies but their role in TS has not been explored. Stereotypies and episodic utterances, analogous to involuntary movements seen in TS, were induced in rats by intrastriatal microinfusion of TS sera or gamma immunoglobulins (IgG) under noninflammatory conditions, as(More)
Bordering the ventricular cerebrospinal fluid (CSF) are epithelial cells of choroid plexus (CP), ependyma and circumventricular organs (CVOs) that contain homeostatic transporters for mediating secretion/reabsorption. The distributional pathway ("nexus") of CP-CSF-ependyma-brain furnishes peptides, hormones, and micronutrients to periventricular regions. In(More)
The cerebrospinal fluid (CSF)-generating choroid plexus (CP) has many V1 binding sites for arginine vasopressin (AVP). AVP decreases CSF formation rate and choroidal blood flow, but little is known about how AVP alters ion transport across the blood-CSF barrier. Adult rat lateral ventricle CP was loaded with 36Cl-, exposed to AVP for 20 min, and then placed(More)
Aging is the most important single risk factor for developing Alzheimer disease. We measured amyloid-beta peptide (Abeta) levels in rat cerebral cortex and hippocampus during normal aging of Brown-Norway/Fischer rats. Amyloid-beta accumulation was associated with expression of the Abeta influx transporter, the receptor for advanced glycation end-products(More)