Edward G. Stopa

Learn More
This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes(More)
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this(More)
The choroid plexus (CP), i.e., the blood–cerebrospinal fluid barrier (BCSFB) interface, is an epithelial boundary exploitable for drug delivery to brain. Agents transported from blood to lateral ventricles are convected by CSF volume transmission (bulk flow) to many periventricular targets. These include the caudate, hippocampus, specialized(More)
Thinning and discontinuities within the vascular basement membrane (VBM) are associated with leakage of the plasma protein prothrombin across the blood-brain barrier (BBB) in Alzheimer's disease (AD). Prothrombin immunohistochemistry and ELISA assays were performed on prefrontal cortex. In severe AD, prothrombin was localized within the wall and neuropil(More)
Upregulation of certain growth factors in the central nervous system can alter brain fluid dynamics. Hydrocephalus was produced in adult Sprague-Dawley rats by infusing recombinant basic fibroblast growth factor (FGF-2) at 1 microg/day into a lateral ventricle for 2, 3, 5, or 10-12 days. Lateral and third ventricular enlargement progressively increased from(More)
Alzheimer disease (AD) is characterized by deposits of an aggregated 42-amino-acid beta-amyloid peptide (beta AP) in the brain and cerebrovasculature. After a concentration-dependent lag period during in vitro incubations, soluble preparations of synthetic beta AP slowly form fibrillar aggregates that resemble natural amyloid and are measurable by(More)
The receptor for advanced glycation end products (RAGE) is thought to be a primary transporter of β-amyloid across the blood–brain barrier (BBB) into the brain from the systemic circulation, while the low-density lipoprotein receptor-related protein (LRP)-1 mediates transport of β-amyloid out of the brain. To determine whether there are Alzheimer’s disease(More)
As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to(More)
Sleep disruption and other circadian rhythm disturbances are frequently seen in dementia patients. In this study, we examined the suprachiasmatic nucleus (SCN), the putative site of the hypothalamic circadian pacemaker, to determine the nature and degree of pathologic changes caused by severe dementia. Neuropathologic examination indicated that among 30(More)
Reduced clearance of amyloid β peptides (Aβ) across the blood-brain barrier contributes to amyloid accumulation in Alzheimer disease. Amyloid β efflux transport is via the endothelial low-density lipoprotein receptor-related protein 1 (LRP-1) and P-glycoprotein (P-gp), whereas Aβ influx transport is via the receptor for advanced glycation end products.(More)