Learn More
Working memory (WM) involves maintaining information in an on-line state. One emerging view is that information in WM is maintained via sensory recruitment, such that information is stored via sustained activity in the sensory areas that encode the to-be-remembered information. Using functional magnetic resonance imaging, we observed that key sensory(More)
For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is still active debate regarding the mechanisms that mediate this ability. For example, some have argued that subitizing reflects the operation of a fixed-capacity individuation mechanism that enables(More)
Recent studies suggest that visual features are stored in working memory (WM) via sensory recruitment or sustained stimulus-specific patterns of activity in cortical regions that encode memoranda. One important question concerns the spatial extent of sensory recruitment. One possibility is that sensory recruitment is restricted to neurons that are(More)
Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is defined in(More)
Various studies have demonstrated enhanced visual processing when information is presented across both visual hemifields rather than in a single hemifield (the bilateral advantage). For example, Alvarez and Cavanagh (2005) reported that observers were able to track twice as many moving visual stimuli when the tracked items were presented bilaterally rather(More)
Recent studies suggest that the temporary storage of visual detail in working memory is mediated by sensory recruitment or sustained patterns of stimulus-specific activation within feature-selective regions of visual cortex. According to a strong version of this hypothesis, the relative "quality" of these patterns should determine the clarity of an(More)
Previous research has suggested that the involuntary allocation of spatial attention to salient, irrelevant stimuli (i.e., attentional capture) is prevented when attention is in a focused state (e.g., Yantis & Jonides, 1990). Recent work has suggested that although focused attention may be necessary to prevent attentional capture by irrelevant stimuli, it(More)
Visual perception is dramatically impaired when a peripheral target is embedded within clutter, a phenomenon known as visual crowding. Despite decades of study, the mechanisms underlying crowding remain a matter of debate. Feature pooling models assert that crowding results from a compulsory pooling (e.g., averaging) of target and distractor features. This(More)
Multiple studies have documented an inverse relationship between the number of to-be-attended or remembered items in a display ("set size") and task performance. The neural source of this decline in cognitive performance is currently under debate. Here, we used a combination of fMRI and a forward encoding model of orientation selectivity to generate(More)
Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient(More)