Edward D. Salmon

Learn More
In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint(More)
We have developed video microscopy methods to visualize the assembly and disassembly of individual microtubules at 33-ms intervals. Porcine brain tubulin, free of microtubule-associated proteins, was assembled onto axoneme fragments at 37 degrees C, and the dynamic behavior of the plus and minus ends of microtubules was analyzed for tubulin concentrations(More)
The spindle assembly checkpoint delays anaphase until all chromosomes are attached to a mitotic spindle. The mad (mitotic arrest-deficient) and bub (budding uninhibited by benzimidazole) mutants of budding yeast lack this checkpoint and fail to arrest the cell cycle when microtubules are depolymerized. A frog homolog of MAD2 (XMAD2) was isolated and found(More)
We have used time-lapse digital- and video-enhanced differential interference contrast (DE-DIC, VE-DIC) microscopy to study the role of dynein in spindle and nuclear dynamics in the yeast Saccharomyces cerevisiae. The real-time analysis reveals six stages in the spindle cycle. Anaphase B onset appears marked by a rapid phase of spindle elongation,(More)
Most models of mitotic congression and segregation assume that only poleward pulling forces occur at kinetochores. However, there are reports for several different cell types that both mono-oriented and bi-oriented chromosomes oscillate toward and away from the pole throughout mitosis. We used new methods of high resolution video microscopy and(More)
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly(More)
Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered(More)
Mitotic cells face the challenging tasks of linking kinetochores to growing and shortening microtubules and actively regulating these dynamic attachments to produce accurate chromosome segregation. We report here that Ndc80/Hec1 functions in regulating kinetochore microtubule plus-end dynamics and attachment stability. Microinjection of an antibody to the N(More)
BACKGROUND To test current models for how unattached and untense kinetochores prevent Cdc20 activation of the anaphase-promoting complex/cyclosome (APC/C) throughout the spindle and the cytoplasm, we used GFP fusions and live-cell imaging to quantify the abundance and dynamics of spindle checkpoint proteins Mad1, Mad2, Bub1, BubR1, Mps1, and Cdc20 at(More)
Fluorescence microscopic visualization of fluorophore-conjugated proteins that have been microinjected or expressed in living cells and have incorporated into cellular structures has yielded much information about protein localization and dynamics [1]. This approach has, however, been limited by high background fluorescence and the difficulty of detecting(More)