Edward B. Fel'dman

  • Citations Per Year
Learn More
We study the decay of multiple quantum (MQ) NMR coherences in systems with the large number of equivalent spins. As being created on the preparation period of the MQ NMR experiment, they decay due to the dipole-dipole interactions (DDI) on the evolution period of this experiment. It is shown that the relaxation time decreases with the increase in MQ(More)
General formulae for intensities of multiple quantum (MQ) NMR coherences in systems of nuclear spins coupled by the dipole-dipole interactions are derived. The second moments of the MQ coherences of zero- and second orders are calculated for infinite linear chains in the approximation of the nearest neighbor interactions. Supercomputer simulations of(More)
This paper is devoted to multiple quantum (MQ) NMR spectroscopy in nanopores filled by a gas of spin-carrying molecules (s = 1/2) in a strong external magnetic field. It turns out that the high symmetry of the spin system in nanopores yields a possibility to overcome the problem of the exponential growth of the Hilbert space dimension with an increase in(More)
Multiple quantum (MQ) NMR is an effective tool for the generation of a large cluster of correlated particles, which, in turn, represent a basis for quantum information processing devices. Studying the available exactly solvable models clarifies many aspects of the quantum information. In this study, we consider two exactly solvable models in the MQ NMR(More)
Multiple-quantum NMR spin dynamics of inhomogeneous one-dimensional systems in solids is investigated by analytical and numerical methods. A fermion approach for MQ spin dynamics of one-dimensional inhomogeneous systems is developed in the approximation of the dipole-dipole interactions (DDI) of nearest neighbors. It is shown that only MQ coherences of the(More)
Multiple quantum spin dynamics is studied using analytical and numerical methods for one-dimensional finite systems of nuclear spins 12 coupled by dipole-dipole interactions at low temperatures. Exact expressions for intensities of multiple quantum coherences at low temperatures were obtained in the approximation of the nearest neighbor interactions. The(More)
We consider the adiabatic demagnetization in the rotating reference frame (ADRF) of a system of dipolar coupled nuclear spins s = 1/2 in an external magnetic field. The demagnetization starts with the offset of the external magnetic field (in frequency units) from the Larmor frequency being several times greater than the local dipolar field. For different(More)
  • 1