Learn More
The isolation and biochemical characterization of the extracellular form of a cellulose-binding factor (CBF) from Clostridium thermocellum is described. The CBF was isolated from the culture supernatant by a two-step procedure which included affinity chromatography on cellulose and gel filtration on Sepharose 4B. The isolated CBF was homogeneous as(More)
The cellulosome is a macromolecular machine, whose components interact in a synergistic manner to catalyze the efficient degradation of cellulose. The cellulosome complex is composed of numerous kinds of cellulases and related enzyme subunits, which are assembled into the complex by virtue of a unique type of scaffolding subunit (scaffoldin). Each of the(More)
The structural complexity and rigidity of cellulosic substrates have given rise to a phenomenal diversity of degradative enzymes--the cellulases. Cellulolytic microorganisms produce a wide variety of different catalytic and noncatalytic enzyme modules, which form the cellulases and act synergistically on their substrate. In some microbes, several types of(More)
The cellulases of many cellulolytic bacteria are organized into discrete multienzyme complexes, called cellulosomes. The multiple subunits of cellulosomes are composed of numerous functional domains, which interact with each other and with the cellulosic substrate. One of these subunits comprises a distinctive new class of noncatalytic scaffolding(More)
The cellulosome is an extracellular supramolecular machine that can efficiently degrade crystalline cellulosic substrates and associated plant cell wall polysaccharides. The cellulosome arrangement can also promote adhesion to the insoluble substrate, thus providing individual microbial cells with a direct competitive advantage in the utilization of the(More)
The family 9 cellulase gene celI of Clostridium thermocellum, was previously cloned, expressed, and characterized (G. P. Hazlewood, K. Davidson, J. I. Laurie, N. S. Huskisson, and H. J. Gilbert, J. Gen. Microbiol. 139:307-316, 1993). We have recloned and sequenced the entire celI gene and found that the published sequence contained a 53-bp deletion that(More)
The microbiota of the mammalian intestine depend largely on dietary polysaccharides as energy sources. Most of these polymers are not degradable by the host, but herbivores can derive 70% of their energy intake from microbial breakdown--a classic example of mutualism. Moreover, dietary polysaccharides that reach the human large intestine have a major impact(More)
The discrete multicomponent, multienzyme cellulosome complex of anaerobic cellulolytic bacteria provides enhanced synergistic activity among the different resident enzymes to efficiently hydrolyze intractable cellulosic and hemicellulosic substrates of the plant cell wall. A pivotal noncatalytic subunit called scaffoldin secures the various enzymatic(More)
Acinetobacter calcoaceticus RAG-1, a hydrocarbon-degrading bacterium which adheres avidly to hydrocarbons and other hydrophobic surfaces, possesses numerous thin fimbriae (ca. 3.5-nm diameter) on the cell surface. MR-481, a nonadherent mutant of RAG-1 which is unable to grow on hexadecane under conditions of limited emulsification and low initial cell(More)
The cross-species specificity of the cohesin-dockerin interaction, which defines the incorporation of the enzymatic subunits into the cellulosome complex, has been investigated. Cohesin-containing segments from the cellulosomes of two different species, Clostridium thermocellum and Clostridium cellulolyticum, were allowed to interact with cellulosomal(More)