Edurne Gallastegui

Learn More
The establishment of a stable reservoir of latently infected cells allows HIV to persist in the host. Usually, HIV infection of T cells results in integration of the viral genome, with a preference for regions in the human genome containing active genes, viral expression, and production of new viruses. However, in rare cases T cells become latently(More)
The cyclin-cdk (cyclin-dependent kinase) inhibitor p27Kip1 (p27) has a crucial negative role on cell cycle progression. In addition to its classical role as a cyclin-cdk inhibitor, it also performs cyclin-cdk-independent functions as the regulation of cytoskeleton rearrangements and cell motility. p27 deficiency has been associated with tumor aggressiveness(More)
Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of(More)
Although highly active antiretroviral therapy (HAART) has converted HIV into a chronic disease, a reservoir of HIV latently infected resting T cells prevents the eradication of the virus from patients. To achieve eradication, HAART must be combined with drugs that reactivate the dormant viruses. We examined this problem in an established model of HIV(More)
Transcriptional repressor complexes containing p130 and E2F4 regulate the expression of genes involved in DNA replication. During the G1 phase of the cell cycle, sequential phosphorylation of p130 by cyclin-dependent kinases (Cdks) disrupts these complexes allowing gene expression. The Cdk inhibitor and tumor suppressor p27(Kip1) associates with p130 and(More)
PCAF and GCN5 acetylate cyclin A at specific lysine residues targeting it for degradation at mitosis. We report here that histone deacetylase 3 (HDAC3) directly interacts with and deacetylates cyclin A. HDAC3 interacts with a domain included in the first 171 aa of cyclin A, a region involved in the regulation of its stability. In cells, overexpression of(More)
Cyclin-dependent kinases (Cdks) belong to a family of key regulators of cell division cycle and transcription. Their activity is mainly regulated by association with regulatory subunits named cyclins but their activities are also regulated by phosphorylation, acetylation, and the association with specific inhibitory proteins (CKIs). The activity of(More)
The tumor suppressor p21 regulates cell cycle progression and peaks at mid/late G1. However, the mechanisms regulating its expression during cell cycle are poorly understood. We found that embryonic fibroblasts from p27 null mice at early passages progress slowly through the cell cycle. These cells present an elevated basal expression of p21 suggesting that(More)
Cyclin-dependent kinases (Cdks) belong to a family of key regulators of cell division cycle and transcription. The activity of some of them is deregulated in tumor cells and to find specific inhibitors is an important goal to be achieved. We report here the current methods to determine their in vitro activity in order to facilitate the identification of(More)