Eduardo W. Basso

Learn More
In this paper we introduce RL-CD, a method for solving reinforcement learning problems in non-stationary environments. The method is based on a mechanism for creating, updating and selecting one among several partial models of the environment. The partial models are incrementally built according to the system's capability of making predictions regarding a(More)
Coping with dynamic changes in traffic volume has been the object of recent publications. Recently, a method was proposed, which is capable of learning in non-stationary scenarios via an approach to detect context changes. For particular scenarios such as the traffic control one, the performance of that method is better than a greedy strategy, as well as(More)
In this paper we propose a method for solving reinforcement learning problems in non-stationary environments. The basic idea is to create and simultaneously update multiple partial models of the environment dynamics. The learning mechanism is based on the detection of context changes, that is, on the detection of significant changes in the dynamics of the(More)
In this paper we propose a neural architecture for solving continuous time and space reinforcement learning problems in non-stationary environments. The method is based on a mechanism for creating, updating and selecting partial models of the environment. The partial models are incrementally estimated using linear approximation functions and are built(More)
This student abstract describes ongoing investigations regarding an approach for dealing with non-stationarity in reinforcement learning (RL) problems. We briefly propose and describe a method for managing multiple partial models of the environment and comment previous results which show that the proposed mechanism has better convergence times comparing to(More)
  • 1