Learn More
The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs that are extremely difficult to replicate synthetically. We emulate nature's toughening mechanisms by combining(More)
Materials that are strong, ultralightweight, and tough are in demand for a range of applications, requiring architectures and components carefully designed from the micrometer down to the nanometer scale. Nacre, a structure found in many molluscan shells, and bone are frequently used as examples for how nature achieves this through hybrid organic-inorganic(More)
The in vitro response in simulated body fluid (SBF) of silicate glass coatings on Ti6A14V was evaluated. Glasses belonging to the SiO2-CaO-MgO-Na2O-K2O-P2O5 system were used to prepare 50-70 m thick coatings on Ti6Al4V, employing a simple enameling technique. Glasses with silica content higher than 55 wt% can be used to prepare coatings that do not crack or(More)
As a first step toward the design and fabrication of biomimetic bonelike composite materials, we have developed a template-driven nucleation and mineral growth process for the high-affinity integration of hydroxyapatite with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate(More)
The notion of replicating the unique fracture resistance of natural composites in synthetic materials has generated much interest but has yielded few real technological advances. Here we demonstrate how using ice-templated structures, the concept of hierarchical design can be applied to conventional compounds such as alumina and poly(methyl methacrylate)(More)
The synthesis of wafer-scale single crystal graphene remains a challenge toward the utilization of its intrinsic properties in electronics. Until now, the large-area chemical vapor deposition of graphene has yielded a polycrystalline material, where grain boundaries are detrimental to its electrical properties. Here, we study the physicochemical mechanisms(More)
The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are(More)
The adverse effects of stress shielding from the use of high-modulus metallic alloy bio-implant materials has led to increased research into developing polymer-ceramic composite materials that match the elastic modulus of human bone. Of particular interest are poly-l-lactic acid- hydroxyapatite (PLA/HA)-based composites which are fully resorbable in vivo.(More)
The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels.(More)
This paper introduces our approach to modeling the mechanical behavior of cellular ceramics, through the example of calcium phosphate scaffolds made by robocasting for bone-tissue engineering. The Weibull theory is used to deal with the scaffolds' constitutive rods statistical failure, and the Sanchez-Palencia theory of periodic homogenization is used to(More)