Learn More
The isopenicillin-N acyltransferase of Penicillium chrysogenum catalyzes the conversion of the biosynthetic intermediate isopenicillin N to the hydrophobic penicillins. The isopenicillin-N acyltransferase copurified with the acyl-CoA:6-aminopenicillanic acid (6-APA) acyltransferase activity which transfers an acyl residue from acyl-CoA derivatives (e.g.(More)
An improved electrophoretic molecular karyotype of Aspergillus nidulans ATCC 28901 has been obtained by contour-clamped electric field gel electrophoresis, which separates seven chromosomal bands and allows resolution of chromosomes III and VI. The three genes of the penicillin biosynthetic pathway, pcbAB, pcbC, and penDE, encoding(More)
The organization of the genes of the penicillin cluster has been studied in three different mutants of P. chrysogenum impaired in penicillin biosynthesis. The three blocked mutants (derived from the parental strain P. chrysogenum Bb-1) lacked the genes pcbAB, pcbC and penDE of the penicillin biosynthetic pathway and were unable to form isopenicillin N(More)
The isopenicillin N acyltransferases (IATs) of Aspergillus nidulans and Penicillium chrysogenum differed in their ability to maintain the 40-kDa proacyltransferase alphabeta heterodimer in an undissociated form. The native A. nidulans IAT exhibited a molecular mass of 40 kDa by gel filtration. The P. chrysogenum IAT showed a molecular mass of 29 kDa by gel(More)
The penDE gene encoding acyl-CoA:6-amino penicillanic acid acyltransferase (AAT), the last enzyme of the penicillin biosynthetic pathway, has been cloned from the DNA of Aspergillus nidulans. The gene contains three introns which are located in the 5′ region of the open reading frame. It encodes a protein of 357 amino acids with a molecular weight of 39 240(More)
Penicillium chrysogenum L2, a lysine auxotroph blocked in the early steps of the lysine pathway before 2-aminoadipic acid, was able to synthesize penicillin when supplemented with lysine. The amount of penicillin produced increased as the level of lysine in the media was increased. The same results were observed in resting-cell systems. Catabolism of(More)
Five mutants of Penicillium chrysogenum blocked in penicillin biosynthesis (npe) which are deficient in isopenicillin N-acyltransferase were isolated previously. Three of these mutants, npe6, npe7, and npe8, have been characterized at the molecular level and compared with npe10, a deletion mutant. Transcripts of normal size (1.15 kb) of the penDE genes,(More)
A 24-kb region of Cephalosporium acremonium C10 DNA was cloned by hybridization with the pcbAB and pcbC genes of Penicillium chrysogenum. A 3.2-kb BamHI fragment of this region complemented the mutation in the structural pcbC gene of the C. acremonium N2 mutant, resulting in cephalosporin production. A functional alpha-aminoadipyl-cysteinyl-valine (ACV)(More)
  • 1