Eduardo Karahanian

Learn More
A gene encoding laccase has been isolated from a genomic library of the white-rot basidiomycete Ceriporiopsis subvermispora constructed in Lambda GEM-11. This gene (Cs-lcs1) contains an open reading frame of 2215 bp, encoding a mature protein of 499 amino acids with a 21-residue signal peptide. The protein sequence exhibits between 63 and 68% identity with(More)
Lignin peroxidase-like genes were PCR amplified from Phanerochaete sordida and Ceriporiopsis subvermispora, fungi lacking lignin peroxidase (LiP) activity. Amplification products were highly similar to previously described LiP genes. Using reverse transcription-coupled PCR a LiP-like cDNA clone was amplified from P. sordida RNA. In contrast, no evidence was(More)
BACKGROUND  While the molecular entity responsible for the rewarding effects of virtually all drugs of abuse is known, that for ethanol remains uncertain. Some lines of evidence suggest that the rewarding effects of alcohol are mediated not by ethanol per se but by acetaldehyde generated by catalase in the brain. However, the lack of specific inhibitors of(More)
BACKGROUND In animal models of continuous alcohol self-administration, in which physical dependence does not constitute the major factor of ethanol intake, 2 factors likely contribute to the perpetuation of alcohol self-administration: (i) the rewarding effects of ethanol and (ii) the contextual conditioning cues that exist along with the process of(More)
Previous studies suggest that acetaldehyde generated from ethanol in the brain is reinforcing. The present studies tested the feasibility of achieving a long-term reduction of chronic and post-deprivation binge ethanol drinking by a single administration into the brain ventral tegmental area (VTA) of a lentiviral vector that codes for aldehyde(More)
This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that(More)
A cDNA (MnP13-1) and the Cs-mnp1 gene encoding for an isoenzyme of manganese peroxidase (MnP) from C. subvermispora were isolated separately and sequenced. The cDNA, identified in a library constructed in the vector Lambda ZIPLOX, contains 1285 nucleotides, excluding the poly(A) tail, and has a 63% G+C content. The deduced protein sequence shows a high(More)
BACKGROUND Animals that have chronically consumed alcohol and are subsequently deprived of it markedly increase their intake above basal levels when access to alcohol is reinstated. Such an effect, termed the alcohol deprivation effect (ADE), has been proposed to reflect (i) an obsessive-compulsive behavior, (ii) craving, or (iii) an increased reinforcing(More)
Salsolinol is formed non-enzymatically when ethanol-derived acetaldehyde binds to dopamine, yielding 2 distinct products, i.e., salsolinol and isosalsolinol. Early animal studies, revealing that salsolinol promotes alcohol consumption and recent evidence that animals will readily self-administer salsolinol into the posterior ventral tegmental area (p-VTA)(More)
BACKGROUND Some gene polymorphisms strongly protect against the development of alcoholism. A large proportion of East Asians carry a protective inactivating mutation in aldehyde dehydrogenase (ALDH2*2). These subjects display high levels of blood acetaldehyde when consuming alcohol, a condition that exerts a 66 to 99% protection against alcohol abuse and(More)