Eduard Rohan

Learn More
This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen-apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how(More)
The paper deals with a model of the homogenized fluid saturated porous material which recently was obtained by the authors using the asymptotic analysis of the Biot type medium characterized by the double porosity. The homogenized macroscopic model is featured by the fading memory effects arising from the microflow in the dual porosity. We derive the steady(More)
The paper deals with modeling the liver perfusion intended to improve quantitative analysis of the tissue scans provided by the contrast-enhanced computed tomography (CT). For this purpose, we developed a model of dynamic transport of the contrast fluid through the hierarchies of the perfusion trees. Conceptually, computed time-space distributions of the(More)