Eduard Carbonell-Sanromà

  • Citations Per Year
Learn More
Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation(More)
We report the on-surface synthesis of 7-armchair graphene nanoribbons (7-AGNRs) substituted with nitrile (CN) functional groups. The CN groups are attached to the GNR backbone by modifying the 7-AGNR precursor. Whereas many of these groups survive the on-surface synthesis, the reaction process causes the cleavage of some CN from the ribbon backbone and the(More)
Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron inclusion is achieved through the addition of a small amount of(More)
  • 1