Edson R Rocha

Learn More
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal,(More)
There is little known about the sequences that mediate the initiation of transcription in Bacteroides fragilis, thus transcriptional start sites for 13 new genes were determined and a total of 23 promoter regions upstream of the start sites were aligned and similarities were noted. A region at about -7 contained a consensus sequence of TAnnTTTG and upstream(More)
The intestinal anaerobic symbiont, Bacteroides fragilis, is highly aerotolerant and resistant to H(2)O(2). Analysis of the transcriptome showed that expression of 45% of the genome was significantly affected by oxidative stress. The gene expression patterns suggested that exposure to oxidative stress induced an acute response to rapidly minimize the(More)
The peroxide response-inducible genes ahpCF, dps, and katB in the obligate anaerobe Bacteroides fragilis are controlled by the redox-sensitive transcriptional activator OxyR. This is the first functional oxidative stress regulator identified and characterized in anaerobic bacteria. oxyR and dps were found to be divergently transcribed, with an overlap in(More)
Regulation of the katB catalase gene in the anaerobic bacterium Bacteroides fragilis was studied. Northern blot hybridization analyses revealed that katB was transcribed as an approximately 1.6-kb monocistronic mRNA. The levels of katB mRNA increased > 15-fold when anaerobic, mid-logarithmic-phase cultures were exposed to O2, O2 with paraquat, or hydrogen(More)
A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The(More)
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the(More)
A Bacteroides fragilis mutant resistant to hydrogen peroxide and alkyl peroxide was isolated by enrichment in increasing concentrations of hydrogen peroxide. The mutant strain was constitutively resistant to 100 mM H2O2 and 5 mM cumene hydroperoxide (15-min exposure). In contrast, the parent strain was protected against <10 mM H2O2 when the peroxide(More)
Bacteroides fragilis, a component of the normal intestinal flora, is an obligate anaerobe capable of long-term survival in the presence of air. Survival is attributed to an elaborate oxidative stress response that controls the induction of more than 28 peptides, but there is limited knowledge concerning the identities of these peptides. In this report, RNA(More)
Gram-negative anaerobes in the genus Bacteroides are the predominant members of the GI-tract microflora where they play an important role in normal intestinal physiology. Bacteroides spp. also are significant opportunistic pathogens responsible for an array of intra-abdominal and other infections. Bacteroides fragilis is the most common anaerobic pathogen(More)