Edson L. Padoin

Learn More
The High-Performance Computing (HPC) community aimed for many years at increasing performance regardless to energy consumption. However, energy is limiting the scalability of next generation supercomputers. Current HPC systems already cost huge amounts of power, in the order of a few Mega Watts (MW). The future HPC systems intend to achieve 10 to 100 times(More)
The High Performance Computing (HPC) community aimed for many years to increase performance regardless of energy consumption. Until the end of the decade, a next generation of HPC systems is expected to reach sustained performances of the order of exaflops. This requires many times more performance compared to the fastest supercomputers of today. Achieving(More)
Most High Performance Computing (HPC) systems today are known as "power hungry" because they aim at computing speed regardless to energy consumption. Some scientific applications still claim more speed and the community expects to reach exascale by the end of the decade. Nevertheless, to reach exascale we need to search alternatives to cope with energy(More)
Energy consumption on systems that have a continuous power source is tightly-related to both the computing time of an application and its required CPU load. Considering the scope of HPC applications which commonly have a time precision in nano or milliseconds, we observe a lack of systems that combine appropriate sampling rate, low intrusiveness and low(More)
As large-scale parallel platforms are deployed to comply with the increasing performance requirements of scientific applications, a new concern is getting the attention of the HPC community: the power consumption. In this paper, we aim at evaluating the viability of using low-power architectures as file systems servers in HPC environments, since processing(More)
The power consumption of High Performance Computing (HPC) systems is an increasing concern as large-scale systems grow in size and, consequently, consume more energy. In response to this challenge, we propose two variants of a new energy-aware load balancer that aim at reducing the energy consumption of parallel platforms running imbalanced scientific(More)
  • 1