Learn More
We report on a fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms for 8-point functions. The measured visibility of the 8-path interferometer is about 97.5%. Potential applications of our setup to quantum communication or cryptographic protocols using several qubits are discussed.
Using the quantum theory of light, we derive general analytical expressions of Stokes and anti-Stokes spectral photon-flux densities that are spontaneously generated by a single monochromatic pump wave propagating in a single-mode optical fiber. We validate our results by comparing them with experimental data. Limiting cases corresponding to interesting(More)
Coin tossing is a cryptographic task in which two parties who do not trust each other aim to generate a common random bit. Using classical communication this is impossible, but nontrivial coin tossing is possible using quantum communication. Here we consider the case when the parties do not want to toss a single coin, but many. This is called bit-string(More)
We report the fabrication of artificial unidimensional crystals exhibiting an effective bulk second-order nonlinearity. The crystals are created by cycling atomic layer deposition of three dielectric materials such that the resulting metamaterial is noncentrosymmetric in the direction of the deposition. Characterization of the structures by second-harmonic(More)
Error filtration is a method for encoding the quantum state of a single particle into a higher dimensional Hilbert space in such a way that it becomes less sensitive to noise. We have realized a fiber optics demonstration of this method and illustrated its potentialities by carrying out the optical part of a quantum key distribution scheme over a line whose(More)
We present observations of quasi-phase matched parametric fluorescence in a periodically poled twin-hole silica fiber. The phase matching condition in the fiber enables the generation of a degenerate signal field in the fiber-optic communication band centered on 1556 nm. We performed coincidence measurements and a Hong-Ou-Mandel experiment to validate that(More)
We report a detailed experimental study of vector modulation instability in highly birefringent optical fibers in the anomalous-dispersion regime. We prove that the observed instability is mainly induced by vacuum fluctuations. The detuning of the spectral peaks agrees with linear perturbation analysis. The exact shape of the spectrum is well reproduced by(More)
The generation of an octave spanning supercontinuum covering 488-978 nm (at -30  dB) is demonstrated for the first time on-chip. This result is achieved by dispersion engineering a 1-cm-long Si3N4 waveguide and pumping it with an 100-fs Ti:Sapphire laser emitting at 795 nm. This work offers a bright broadband source for biophotonic applications and(More)
Using an optimized lift-off process we develop a technique for both nanoscale and single-dot patterning of colloidal quantum dot films, demonstrating feature sizes down to ~30 nm for uniform films and a yield of 40% for single-dot positioning, which is in good agreement with a newly developed theoretical model. While first of all presenting a unique tool(More)
We study the higher order harmonics of scalar modulational instability in the regime where it arises spontaneously through amplification of vacuum fluctuations. We obtain detailed predictions concerning the detunings, intensities, growth rates, and spectral widths of the harmonics. These predictions are well verified by experimental results obtained by(More)