Learn More
Partial Least Squares-Discriminant Analysis (PLS-DA) is a PLS regression method with a special binary ‘dummy’ y-variable and it is commonly used for classification purposes and biomarker selection in metabolomics studies. Several statistical approaches are currently in use to validate outcomes of PLS-DA analyses e.g. double cross validation procedures or(More)
Metabolomics experiments usually result in a large quantity of data. Univariate and multivariate analysis techniques are routinely used to extract relevant information from the data with the aim of providing biological knowledge on the problem studied. Despite the fact that statistical tools like the t test, analysis of variance, principal component(More)
Metabolomics is an "omic" science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several(More)
One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simple and interpretable solutions. On the basis of the(More)
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and(More)
The ability to restore homeostasis upon environmental challenges has been proposed as a measure for health. Metabolic profiling of plasma samples during the challenge response phase should offer a profound view on the flexibility of a phenotype to cope with daily stressors. Current data modeling approaches, however, struggle to extract biological(More)
BACKGROUND Metabolomics has attracted the interest of the medical community for its potential in predicting early derangements from a healthy to a diseased metabolic phenotype. One key issue is the diversity observed in metabolic profiles of different healthy individuals, commonly attributed to the variation of intrinsic (such as (epi)genetic variation, gut(More)
Understanding the diversity and robustness of the metabolism of bacteria is fundamental for understanding how bacteria evolve and adapt to different environments. In this study, we characterised 121 Streptococcus strains and studied metabolic diversity from a protein domain perspective. Metabolic pathways were described in terms of the promiscuity of(More)
We investigated the effect of sample size and dimensionality on the performance of four algorithms (ARACNE, CLR, CORR, and PCLRC) when they are used for the inference of metabolite association networks. We report that as many as 100-400 samples may be necessary to obtain stable network estimations, depending on the algorithm and the number of measured(More)
Normalization is a fundamental step in data processing to account for the sample-to-sample variation observed in biological samples. However, data structure is affected by normalization. In this paper, we show how, and to what extent, the correlation structure is affected by the application of 11 different normalization procedures. We also discuss the(More)