Edoardo Milotti

Learn More
The triode was invented by Lee de Forest in 1907, and soon afterwards the first amplifiers were built. By 1921 the "thermionic tube" amplifiers were so developed that C. A. Hartmann [1] made the first courageous experiment to verify Schottky's formula for the shot noise spectral density [2]. Hartmann's attempt failed, and it was finally J. B. Johnson who(More)
We report the experimental observation of a light polarization rotation in vacuum in the presence of a transverse magnetic field. Assuming that data distribution is Gaussian, the average measured rotation is (3.9 +/- 0.5) x 10(-12) rad/pass, at 5 T with 44 000 passes through a 1 m long magnet, with lambda = 1064 nm. The relevance of this result in terms of(More)
Experiments show that simple diffusion of nutrients and waste molecules is not sufficient to explain the typical multilayered structure of solid tumours, where an outer rim of proliferating cells surrounds a layer of quiescent but viable cells and a central necrotic region. These experiments challenge models of tumour growth based exclusively on diffusion.(More)
A major goal of modern computational biology is to simulate the collective behaviour of large cell populations starting from the intricate web of molecular interactions occurring at the microscopic level. In this paper we describe a simplified model of cell metabolism, growth and proliferation, suitable for inclusion in a multicell simulator, now under(More)
Multicellular tumor spheroids are an important in vitro model of the pre-vascular phase of solid tumors, for sizes well below the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and organization of tumors at a critical phase of their development. To this end, we have developed a computer(More)
In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding(More)
Simulations of biophysical systems inevitably include steps that correspond to time integrations of ordinary differential equations. These equations are often related to enzyme action in the synthesis and destruction of molecular species, and in the regulation of transport of molecules into and out of the cell or cellular compartments. Enzyme action is(More)
The speed and the versatility of today's computers open up new opportunities to simulate complex biological systems. Here we review a computational approach recently proposed by us to model large tumor cell populations and spheroids, and we put forward general considerations that apply to any fine-grained numerical model of tumors. We discuss ways to bypass(More)
1/fα noises are ubiquitous and affect many measurements. These noises are both a nuisance and a peculiarity of several physical systems; in dielectrics, glasses and networked liquids it is very common to study this noise to gather useful information. Sometimes it happens that the noise has a power-law shape only in a certain frequency range, and contains(More)