Edoardo Milotti

Learn More
We report the experimental observation of a light polarization rotation in vacuum in the presence of a transverse magnetic field. Assuming that data distribution is Gaussian, the average measured rotation is (3.9 +/- 0.5) x 10(-12) rad/pass, at 5 T with 44 000 passes through a 1 m long magnet, with lambda = 1064 nm. The relevance of this result in terms of(More)
Multicellular tumor spheroids are an important in vitro model of the pre-vascular phase of solid tumors, for sizes well below the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and organization of tumors at a critical phase of their development. To this end, we have developed a computer(More)
In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding(More)
Simulations of biophysical systems inevitably include steps that correspond to time integrations of ordinary differential equations. These equations are often related to enzyme action in the synthesis and destruction of molecular species, and in the regulation of transport of molecules into and out of the cell or cellular compartments. Enzyme action is(More)
Experiments show that simple diffusion of nutrients and waste molecules is not sufficient to explain the typical multilayered structure of solid tumours, where an outer rim of proliferating cells surrounds a layer of quiescent but viable cells and a central necrotic region. These experiments challenge models of tumour growth based exclusively on diffusion.(More)
Post-transductional modifications tune the functions of proteins and regulate the collective dynamics of biochemical networks that determine how cells respond to environmental signals. For example, protein phosphorylation and nitrosylation are well-known to play a pivotal role in the intracellular transduction of activation and death signals. A protein can(More)
Running Title: Growth kinetics of tumour cell clones Abstract Objectives: In this study, we quantify the growth variability of tumour cell clones from a human leukemia cell line. Materials and methods: We have used microplate spectrophotometry to measure the growth kinetics of hundreds of individual cell clones from the Molt3 cell line. The growth rate of(More)
Protein functions in cells may be activated or modified by the attachment of several kinds of chemical groups. While protein phosphorylation, i.e. the attachment of a phosphoryl (PO − 3) group, is the most studied form of protein modification, and is known to regulate the functions of many proteins, protein behavior can also be modified by nitrosylation,(More)
This paper presents the simulation of the GLAST high energy gamma-ray telescope. The simulation package, written in C++, is based on the Geant4 toolkit, and it is integrated into a general framework used to process events. A detailed simulation of the electronic signals inside Silicon detectors has been provided and it is used for the particle tracking,(More)