Learn More
— Percolation theory has become a useful tool for the analysis of large-scale wireless networks. We investigate the fundamental problem of characterizing the critical density λ (d) c for d-dimensional Poisson random geometric graphs in continuum percolation theory. By using a probabilistic analysis which incorporates the clustering effect in random(More)
In cooperative relaying, multiple nodes cooperate to forward a packet within a network. To date, such schemes have been primarily investigated at the physical layer with the focus on communication of a single end-to-end flow. This paper considers cooperative relay networks with multiple stochastically varying flows, which may be queued within the network.(More)
In wireless networks, node mobility may be exploited to assist in information dissemination over time. We analyze the latency for information dissemination in large-scale mobile wireless networks. To study this problem, we map a network of mobile nodes to a network of stationary nodes with dynamic links. We then use results from percolation theory to show(More)
—In this paper, polar codes for the m-user multiple access channel (MAC) with binary inputs are constructed. It is shown that Arıkan's polarization technique applied individually to each user transforms independent uses of an m-user binary input MAC into successive uses of extremal MACs. This transformation has a number of desirable properties: (i) the(More)
We propose an algorithm for deinterlacing of interlaced video sequences. It successively builds approximations to the deinterlaced sequence by weighting various interpolation methods. A particular example given here uses four interpolation methods, weighted according to the errors each one introduces. Due to weighting, it is an adaptive algorithm. It is(More)
— The Maximum Differential Backlog (MDB) control policy of Tassiulas and Ephremides has been shown to adaptively maximize the stable throughput of multi-hop wireless networks with random traffic arrivals and queueing. The practical implementation of the MDB policy in wireless networks with mutually interfering links, however , requires the development of(More)
—We study connectivity and transmission latency in wireless networks with unreliable links from a percolation-based perspective. We first examine static models, where each link of the network is functional (active) with some probability, independently of all other links, where the probability may depend on the distance between the two nodes. We obtain(More)
In battery-constrained wireless sensor networks, it is important to employ effective energy management while maintaining some level of network connectivity. Viewing this problem from a percolation-based connectivity perspective, we propose a fully distributed energy management algorithm for large-scale wireless sensor networks. This algorithm allows each(More)
Network coding techniques are used to find the minimum-cost transmission scheme for multicast sessions with or without elastic rate demand. It is shown that in wireline networks, solving for the optimal coding subgraphs in network coding is equivalent to finding the optimal routing scheme in a multicommodity flow problem. A set of node-based distributed(More)
—Large-scale power blackouts caused by cascading failure are inflicting enormous socioeconomic costs. We study the problem of cascading link failures in power networks modelled by random geometric graphs from a percolation-based viewpoint. To reflect the fact that links fail according to the amount of power flow going through them, we introduce a model(More)