Learn More
Low voltage-activated (T-type) calcium currents are observed in many central and peripheral neurons and display distinct physiological and functional properties. Using in situ hybridization, we have localized central and peripheral nervous system expression of three transcripts (alpha1G, alpha1H, and alpha1I) of the T-type calcium channel family (CaVT).(More)
Two-pore-domain potassium (K(+)) channels are substrates for resting K(+) currents in neurons. They are major targets for endogenous modulators, as well as for clinically important compounds such as volatile anesthetics. In the current study, we report on the CNS distribution in the rat and mouse of mRNA encoding seven two-pore-domain K(+) channel family(More)
Using an in vitro rat brain stem slice preparation, we examined the postnatal changes in glycinergic inhibitory postsynaptic currents (IPSCs) and passive membrane properties that underlie a developmental change in inhibitory postsynaptic potentials (IPSPs) recorded in hypoglossal motoneurons (HMs). Motoneurons were placed in three age groups: neonate(More)
Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs,(More)
Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and(More)
We used whole cell current- and voltage-clamp recording in neonatal rat brain stem slices to characterize firing properties and effects of serotonin (5-HT) on neurons (n = 225) in raphe pallidus (RPa) and raphe obscurus (ROb). Of a sample of 51 Lucifer yellow-filled neurons recovered after immunohistochemical processing to detect tryptophan hydroxylase(More)
Background potassium currents carried by the KCNK family of two-pore-domain K+ channels are important determinants of resting membrane potential and cellular excitability. TWIK-related acid-sensitive K+ 1 (TASK-1, KCNK3) and TASK-3 (KCNK9) are pH-sensitive subunits of the KCNK family that are closely related and coexpressed in many brain regions. There is(More)
We compared the electrophysiological responses to serotonin (5-HT) of neonatal and juvenile rat hypoglossal motoneurons (HMs) by using intracellular recording techniques in a brainstem slice preparation. In neonatal HMs (</=P8), 5-HT caused a substantial decrease in the amplitude of spike afterhyperpolarization (AHP) that was associated with an increase in(More)
Despite widespread use of volatile general anesthetics for well over a century, the mechanisms by which they alter specific CNS functions remain unclear. Here, we present evidence implicating the two-pore domain, pH-sensitive TASK-1 channel as a target for specific, clinically important anesthetic effects in mammalian neurons. In rat somatic motoneurons and(More)
TASK-1 and TASK-3, members of the two-pore-domain channel family, are widely expressed leak potassium channels responsible for maintenance of cell membrane potential and input resistance. They are sites of action for a variety of modulatory agents, including volatile anesthetics and neurotransmitters/hormones, the latter acting via mechanisms that have(More)