Edmund A. Rossi

Learn More
We describe a platform technology, termed the dock and lock method, which uses a natural binding between the regulatory subunits of cAMP-dependent protein kinase and the anchoring domains of A kinase anchor proteins for general application in constructing bioactive conjugates of different protein and nonprotein molecules from modular subunits on demand.(More)
Epratuzumab, a humanized anti-CD22 antibody, is currently in clinical trials of B-cell lymphomas and autoimmune diseases, demonstrating therapeutic activity in non-Hodgkin lymphoma (NHL) and systemic lupus erythematosus (SLE). Thus, epratuzumab offers a promising option for CD22-targeted immunotherapy, yet its mechanism of action remains poorly understood.(More)
The use of antibodies against tumor-associated cell surface antigens for the targeted delivery of radionuclides was introduced >20 years ago. Although encouraging results have been achieved with radiolabeled antibodies in the management of hematopoietic malignancies, there remains a need for successfully treating solid tumors with this modality. One(More)
The article reviews the background and current status of pretargeting for cancer imaging and therapy with radionuclides. Pretargeting procedures were introduced approximately 20 years ago as an alternative to directly radiolabeled antibodies. Because they were multistep processes, they were met with resistance but have since progressed to simple and(More)
We examined whether a pretargeting method using a new recombinant anti-CD20 bispecific antibody (bsMAb) followed by (90)Y-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid ((90)Y-DOTA)-peptide could reduce hematologic toxicity yet improve therapeutic responses compared with conventional (90)Y-anti-CD20 IgG and a chemically conjugated bsMAb. TF4,(More)
UNLABELLED Pretargeted radioimmunotherapy (PRIT) with bispecific antibodies in combination with a radiolabeled peptide reduces the radiation dose to normal tissues, especially the bone marrow. In this study, the optimization, therapeutic efficacy, and toxicity of PRIT of colon cancer with a (177)Lu-labeled peptide was determined in mice with(More)
UNLABELLED Small biomolecules are typically radiolabeled with (18)F by binding it to a carbon atom, a process that usually is designed uniquely for each new molecule and requires several steps and hours to produce. We report a facile method wherein (18)F is first attached to aluminum as Al(18)F, which is then bound to a chelate attached to a peptide,(More)
Multivalent antibodies, either monospecific or bispecific, may improve the efficacy of current therapeutic interventions involving a single monoclonal antibody (mAb). We have applied the Dock-and-Lock (DNL) method, a new platform technology for the site-specific and covalent assembly of modular components into stably tethered complexes of defined(More)
PURPOSE With increasing interest in pretargeting procedures for improving the delivery of radionuclides for cancer imaging and therapy, this investigation was undertaken to examine how to optimize a bispecific monoclonal antibody (bsMAb) pretargeting procedure for therapeutic applications. EXPERIMENTAL DESIGN The model system examined was a bsMAb composed(More)
BACKGROUND Radiolabelled antibody targeting of cancer is limited by slow blood clearance. Pretargeting with a non-radiolabelled bispecific monoclonal antibody (bsMAb) followed by a rapidly clearing radiolabelled hapten peptide improves tumour localisation. The primary goals of this first pretargeting study in patients with the anti-CEACAM5 × anti-hapten(More)