Learn More
X-linked spinal and bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic(More)
Although numerous biochemical and electrophysiological studies have already established many of the properties of the putative Ca2+ receptor for exocytosis at the synapse, the molecular mechanism that involves the influx of Ca2+ and the release of neurotransmitters has remained elusive. Several relationships have been established between neurotransmitter(More)
Glycine (Gly) is considered an obligatory co-agonist at NMDA receptors. Müller glia from the retina harbor functional NMDA receptors, as well as low and high affinity Gly transporters, the later identified as GLYT1. We here studied the regulation of Gly transport in primary cultures of Müller glia, as this process could contribute to the modulation of NMDA(More)
Müller glial cells from the retina "in situ" and in primary culture, mainly express the high-affinity sodium-coupled glutamate/aspartate transporter GLAST-1, which dominates total retinal glutamate (Glu) uptake, suggesting a major role for these cells in the modulation of excitatory transmission. The possible involvement of ionotropic and metabotropic Glu(More)
Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knock-in mice onto backgrounds deficient in mismatch repair genes,(More)
Rapid termination of the synaptic action of glutamate (Glu) and glycine (Gly) is achieved by uptake into the presynaptic terminal and glial cells. In the vertebrate CNS, Gly acts both as an inhibitory neurotransmitter and as a Glu modulator or coagonist at postsynaptic N-methyl-D-aspartate (NMDA) receptors. We have previously described NMDA receptors in(More)
Nicotine stimulation of cortical neurons obtained from gestation day 19 rats provoked a dose-dependent release of aspartate, glutamate, glycine and GABA, indicating a functional role for the nicotinic receptor in this model. This release was exclusively Ca2+-dependent (vesicular release) in the case of aspartate and dual Ca2+-dependent and Ca2+-independent)(More)
Glu (glutamate), the excitatory transmitter at the main signalling pathway in the retina, is critically involved in changes in the protein repertoire through the activation of signalling cascades, which regulate protein synthesis at transcriptional and translational levels. Activity-dependent differential gene expression by Glu is related to the activation(More)
BACKGROUND In Huntington's disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore,(More)