Edith M. Gardiner

Learn More
Biochemical purification of a pre-mRNA splicing activity from HeLa cells that stimulates distal alternative 3' splice sites in a concentration-dependent manner resulted in the identification of RNPS1, a novel general activator of pre-mRNA splicing. RNPS1 cDNAs, encoding a putative nucleic-acid-binding protein of unknown function, were previously identified(More)
Neuropeptide Y (NPY) is a downstream modulator of leptin action, possibly at the level of the arcuate nucleus where NPY neurons are known to express both leptin receptors and Y2 receptors. In addition to the well-described role of NPY and leptin in energy balance and obesity, intracerebroventricular administration of NPY or leptin also causes bone loss.(More)
In this study, we show that phosphorylated 3-phosphoinositide-dependent kinase 1 (PDK1) phosphorylates p21-activated kinase 1 (PAK1) in the presence of sphingosine. We identify threonine 423, a conserved threonine in the activation loop of kinase subdomain VIII, as the PDK1 phosphorylation site on PAK1. Threonine 423 is a previously identified PAK1(More)
Osteoblast-osteoclast coordination is critical in the maintenance of skeletal integrity. The modulation of osteoclastogenesis by immature cells of the osteoblastic lineage is mediated through receptor activator of NF kappa B (RANK), its ligand RANKL, and osteoprotegerin (OPG), a natural decoy receptor for RANKL. Here, the expression of OPG and RANKL in(More)
CONTEXT AND OBJECTIVE Hip fracture is partially genetically determined. The present study was designed to examine the contributions of vitamin D receptor (VDR) and collagen I alpha1 (COLIA1) genotypes to the liability to hip fracture in postmenopausal women. DESIGN The study was designed as a prospective population-based cohort investigation. SUBJECTS(More)
The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized(More)
Germ line or hypothalamus-specific deletion of Y2 receptors in mice results in a doubling of trabecular bone volume. However, the specific mechanism by which deletion of Y2 receptors increases bone mass has not yet been identified. Here we show that cultured adherent bone marrow stromal cells from Y2(-/-) mice also demonstrate increased mineralization in(More)
The vitamin D receptor (VDR) is a ligand-dependent transcription factor that heterodimerizes with retinoid X receptor (RXR) and interacts with the basal transcription machinery and transcriptional cofactors to regulate target gene activity. The p160 coactivator GRIP1 and the distinct coregulator Ski-interacting protein (SKIP)/NCoA-62 synergistically enhance(More)
The processing of heterogeneous nuclear RNA (hnRNA) into a mature message occurs within a number of different nuclear ribonucleoprotein (RNP) complexes which bind to the hnRNA and provide the machinery for these modifying events. Although some components of the nuclear RNP complexes have been isolated, many remain to be elucidated. We report here the(More)
In mammals there are two ubiquitous, catalytically indistinguishable isoforms of inosine monophosphate dehydrogenase and mutations in the type I isoform, but not type II, cause retina-specific disorders. We have characterised the spatio-temporal expression of these proteins during development of the rat retina and performed functional investigations of the(More)