Learn More
We present a static analysis that infers both upper and lower bounds on the usage that a logic program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The(More)
We provide an overall description of the Ciao multiparadigm programming sy stem emphasizing some of the novel aspects and motivations behind its design and implementation. An important aspect of Ciao is that, in addition to supporting logic programming (and, in particular, Prolog), it provides the programmer with a large number of useful features from(More)
We present a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our overall approach is that we preserve the use of a unified assertion language for all of these tasks. We first describe a method for compiling run-time checks for (parts of) assertions which cannot be(More)
Effective static analyses have been proposed which infer bounds on the number of resolutions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation(More)
Abstract machines provide a certain separation between platform-dependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the specific abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for(More)
Effective static analyses have been proposed which infer bounds on the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed(More)
Motivation. Predicting statically the running time of programs has many applications ranging from task scheduling in parallel execution to proving the ability of a program to meet strict time constraints. A starting point in order to attack this problem is to infer the computational complexity of such programs (or fragments thereof). This is one of the(More)
Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling(More)
  • 1