Learn More
There is a dire need for novel therapeutics to treat the virulent malarial parasite, Plasmodium falciparum. Recently, the X-ray crystal structure of enoyl-acyl carrier protein reductase (ENR) in complex with triclosan has been determined and provides an opportunity for the rational design of novel inhibitors targeting the active site of ENR. Here, we report(More)
Malaria is a global health problem that causes significant mortality and morbidity, with more than 1 million deaths per year caused by Plasmodium falciparum. Most antimalarial drugs face decreased efficacy due to the emergence of resistant parasites, which necessitates the discovery of new drugs. To identify new antimalarials, we developed an automated(More)
A structure-based approach has been taken to develop 4'-substituted analogs of triclosan that target the key malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of these compounds exhibit nanomolar potency against purified PfENR enzyme and modest (2-10microM) potency against in vitro cultures of drug-resistant and(More)
OBJECTIVES Microbial adhesion and biofilms have important implications for human health and disease. Candida albicans is an opportunistic pathogen which forms drug-resistant biofilms that contribute to the recalcitrance of disease. We have developed a high-throughput screen for potentiators of clotrimazole, a common therapy for Candida infections, including(More)
2'-Substituted analogs of triclosan have been synthesized to target inhibition of the key malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of these compounds exhibit good potency (EC50<500 nM) against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and modest (IC50=1-20(More)
Pharmacological inhibition of dietary lipid absorption induces favorable changes in serum lipoprotein levels in patients that are at risk for cardiovascular disease and is considered an adjuvant or alternative treatment with HMG-CoA reductase inhibitors (statins). Here we demonstrate the feasibility of identifying novel inhibitors of intestinal lipid(More)
A cell suspension culture of Tabernaemontana elegans lost its ability to produce alkaloids after a prolonged period of subculture. To determine whether it was still capable of performing the later steps of the alkaloid biosynthetic pathway, the culture was fed with tryptamine and loganin. The precursors and alkaloids were determined in the biomass and in(More)
A cell suspension culture of Tabernaemontana divaricata, that had lost alkaloid production, was still capable of producing a similar pattern of alkaloids as directly after its initiation. When fed with early precursors, such as tryptamine and loganin, 57% of the precursors was converted into indole alkaloids such as strictosidine, vallesamine,(More)
  • 1